A Transmission Strategy for Hyperbolic Internal Waves of Small Width
Séminaire Équations aux dérivées partielles (Polytechnique) (2005-2006), Talk no. 13, 9 p.

Semilinear hyperbolic problems with source terms piecewise smooth and discontinuous across characteristic surfaces yield similarly piecewise smooth solutions. If the discontinuous source is replaced with a smooth transition layer, the discontinuity of the solution is replaced by a smooth internal layer. In this paper we describe how the layer structure of the solution can be computed from the layer structure of the source in the limit of thin layers. The key idea is to use a transmission problem strategy for the problem with the smooth internal layer. That leads to an ansatz different from the obvious candidates. The obvious candidates lead to overdetermined equations for correctors. With the transmission problem strategy we compute infinitely accurate expansions.

     author = {Gues, Olivier and Rauch, Jeffrey},
     title = {A Transmission Strategy for Hyperbolic Internal Waves of Small Width},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2005-2006},
     note = {talk:13},
     mrnumber = {2276078},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2005-2006____A13_0}
Gues, Olivier; Rauch, Jeffrey. A Transmission Strategy for Hyperbolic Internal Waves of Small Width. Séminaire Équations aux dérivées partielles (Polytechnique) (2005-2006), Talk no. 13, 9 p. http://www.numdam.org/item/SEDP_2005-2006____A13_0/

[A] S. Alinhac, Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Comm. Partial Differential Equations 14, no. 2, 173–230, 1989. | Zbl 0692.35063

[AR] D. Alterman, J. Rauch, Nonlinear geometric optics for short pulses, J. Differential Equations 178 (2002), no. 2, 437–465. | MR 1879833 | Zbl 1006.35015

[BR] K. Barrailh, D. Lannes, A general framework for diffractive optics and its applications to lasers with large spectrum and short pulses, SIAM, Journal on Mathematical Analysis 34 , no. 3, 636-674, 2003. | MR 1970887 | Zbl 1032.78015

[F] K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7, 517-550, 1954. | MR 62932 | Zbl 0059.08902

[G1] O. Guès, Problèmes mixtes hyperboliques caractéristiques semi-linéaires, in Thèse, Univ. of Rennes 1, 1989.

[G2] O. Guès, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations 15, no. 5, 595-645, 1990. | MR 1070840 | Zbl 0712.35061

[G3] O. Guès, Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites, Ann. Inst. Fourier, 45, no. 4, 973-1006, 1995. | Numdam | MR 1359836 | Zbl 0831.34023

[GR] O. Guès, J. Rauch Nonlinear asymptotics for hyperbolic internal waves of small width, Journal of Hyperbolic PDE, to appear, (see http://www.math.lsa.umich.edu/~rauch). | MR 2229857 | Zbl 1096.35083

[GMWZ] O. Guès, G. Métivier, M. Williams, K. Zumbrun, Multidimensional viscous shocks. II: The small viscosity limit, Comm. Pure Appl. Math. 57 (2004), no. 2, 141–218. | MR 2012648 | Zbl 1073.35162

[LP] P. Lax, R. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math., 13, 427-455, 1960. | MR 118949 | Zbl 0094.07502

[MO] A. Majda, S. Osher, Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28, 607-676, 1975. | MR 410107 | Zbl 0314.35061

[M1] G. Métivier, Ondes discontinues pour les systèmes hyperboliques semi-linéaires, Recent developments in hyperbolic equations, 159–169, Pitman Res. Notes Math. Ser., 183, Longman Sci. Tech., Harlow, 1988. | MR 984367 | Zbl 0724.35065

[M2] G. Métivier, The Cauchy problem for semilinear hyperbolic systems with discontinuous data, Duke Math. J., 53, no. 4, 983-1011, 1986. | MR 874678 | Zbl 0631.35056

[R] J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc. 291, no. 1, 167–187, 1985. | MR 797053 | Zbl 0549.35099

[RK] J. Rauch, M. Keel, Lectures on geometric optics. Hyperbolic equations and frequency interactions, 383–466, IAS/Park City Math. Ser., 5, Amer. Math. Soc., Providence, RI, 1999. | MR 1662833 | Zbl 0926.35003

[RR1] J. Rauch, M. Reed, Bounded, stratified and striated solutions of hyperbolic systems, Nonlinear partial differential equations and their applications. College de France Seminar, Vol. IX, 334–351, Pitman Res. Notes Math. Ser., 181, Longman Sci. Tech., Harlow, 1988. | MR 992654 | Zbl 0695.35124

[RR2] J. Rauch, M. Reed, Discontinuous progressing waves for semilinear systems, Comm. Partial Differential Equations 10, no. 9, 1033–1075, 1985. | MR 806255 | Zbl 0598.35069

[S] F. Sueur, Approche visqueuse de solutions discontinues de systèmes hyperboliques semi linéaires, Annales Institut Fourier, Grenoble, to appear. | Numdam | Zbl 1094.35024

[T] B. Texier, The short wave limit for symmetric hyperbolic systems, Advances in Differential Equations, 9 no. 1-2, 1–52. 2004. | MR 2099605 | Zbl 1108.35372