@article{AIHPC_2005__22_3_343_0,
author = {Rifford, Ludovic},
title = {Stratified semiconcave {control-Lyapunov} functions and the stabilization problem},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {343--384},
year = {2005},
publisher = {Elsevier},
volume = {22},
number = {3},
doi = {10.1016/j.anihpc.2004.07.008},
mrnumber = {2136728},
zbl = {02192476},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.008/}
}
TY - JOUR AU - Rifford, Ludovic TI - Stratified semiconcave control-Lyapunov functions and the stabilization problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 343 EP - 384 VL - 22 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.008/ DO - 10.1016/j.anihpc.2004.07.008 LA - en ID - AIHPC_2005__22_3_343_0 ER -
%0 Journal Article %A Rifford, Ludovic %T Stratified semiconcave control-Lyapunov functions and the stabilization problem %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 343-384 %V 22 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2004.07.008/ %R 10.1016/j.anihpc.2004.07.008 %G en %F AIHPC_2005__22_3_343_0
Rifford, Ludovic. Stratified semiconcave control-Lyapunov functions and the stabilization problem. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 3, pp. 343-384. doi: 10.1016/j.anihpc.2004.07.008
[1] , , Structural properties of singularities of semiconcave functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (4) (1999) 719-740. | Zbl | MR | Numdam
[2] , , , On the singularities of convex functions, Manuscripta Math. 76 (3-4) (1992) 421-435. | Zbl | MR
[3] , , Patchy vector fields and asymptotic stabilization, ESAIM Control Optim. Calc. Var. 4 (1999) 445-471. | Zbl | MR | Numdam
[4] , Discontinuous control of nonholonomic systems, Systems Control Lett. 27 (1) (1996) 37-45. | Zbl | MR
[5] , Viability Theory, Birkhäuser Boston, Boston MA, 1991. | Zbl | MR
[6] , , Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser Boston, Boston, MA, 1997. | Zbl | MR
[7] , Asymptotic stability and feedback stabilization, in: , , (Eds.), Differential Geometric Control Theory, Birkhäuser, Boston, 1983, pp. 181-191. | Zbl | MR
[8] , , Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, vol. 58, Birkhäuser Boston, Boston, MA, 2004. | Zbl | MR
[9] , Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983. | Zbl | MR
[10] , , , , Asymptotic controllability implies feedback stabilization, IEEE Trans. Automat. Control 42 (1997) 1394-1407. | Zbl | MR
[11] , , , , Nonsmooth Analysis and Control Theory, Graduate Texts in Math., vol. 178, Springer-Verlag, New York, 1998. | Zbl | MR
[12] , , , Proximal smoothness and the lower- property, J. Convex Anal. 2 (1995) 117-145. | Zbl | MR
[13] , On the stabilization of some nonlinear control systems: results, tools, and applications, in: Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998), Kluwer Academic, Dordrecht, 1999, pp. 307-367. | Zbl | MR
[14] , , Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1) (1983) 1-42. | Zbl | MR
[15] , The Theory of Matrices. Vol. 1, AMS Chelsea Publishing, Providence, RI, 1998. | Zbl | MR
[16] , , Stratified Morse Theory, Springer-Verlag, Berlin, 1988. | Zbl | MR
[17] , Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, MA, 1982, (Advanced Publishing Program). | Zbl | MR
[18] , Continuous selections. I, Ann. of Math. (2) 63 (1956) 361-382. | Zbl | MR
[19] , A dual to Lyapunov stability theorem, Systems Control Lett. 42 (3) (2000) 161-168. | Zbl | MR
[20] A. Rantzer, A converse Lyapunov stability theorem, Personnal communication.
[21] L. Rifford, Problèmes de stabilisation en théorie du controle, PhD thesis, Université Claude Bernard Lyon I, 2000.
[22] , Stabilisation des systèmes globalement asymptotiquement commandables, C. R. Acad. Sci. Paris Sér. I Math. 330 (3) (2000) 211-216. | Zbl | MR
[23] , Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM J. Control Optim. 39 (4) (2000) 1043-1064. | Zbl | MR
[24] , Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim. 41 (3) (2002) 659-681. | Zbl | MR
[25] , Singularities of viscosity solutions and the stabilization problem in the plane, Indiana Univ. Math. J. 52 (5) (2003) 1373-1396. | Zbl | MR
[26] , A Morse-Sard theorem for the distance function on Riemannian manifolds, Manuscripta Math. 113 (2004) 251-265. | Zbl | MR
[27] L. Rifford, On the existence of local smooth repulsive stabilizing feedbacks in dimension three, in preparation. | Zbl
[28] L. Rifford, The stabilization problem on surfaces, Rend. Semin. Mat. Torino, submitted for publication.
[29] , Convex Analysis, Princeton University Press, Princeton, NJ, 1997, Reprint of the 1970 original, Princeton Paperbacks. | Zbl | MR
[30] , A Lyapunov-like characterization of asymptotic controllability, SIAM J. Control Optim. 21 (1983) 462-471. | Zbl | MR
[31] , Stability and stabilization: discontinuities and the effect of disturbances, in: Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998), Kluwer Academic, Dordrecht, 1999, pp. 307-367. | Zbl | MR
[32] , Clocks and insensitivity to small measurement errors, ESAIM Control Optim. Calc. Var. 4 (1999) 537-557. | Zbl | MR | Numdam
[33] , Subanalytic sets and feedback control, J. Differential Equations 31 (1) (1979) 31-52. | Zbl | MR
Cité par Sources :






