Let be a strictly increasing linear recurrent sequence of integers with having characteristic polynomial . It is well known that each positive integer can be uniquely represented by the so-called greedy expansion for satisfying . Here the digits are defined recursively in a way that holds for . In the present paper we study the sum-of-digits function under certain natural assumptions on the sequence . In particular, we determine its level of distribution . To be more precise, we show that for with we have for each and all that
Here can be computed explicitly and we have for . As an application we show that has at most two prime factors provided that the coefficient is not too small. Moreover, using Bombieri’s sieve an “almost prime number theorem” for follows from our result.
Our work extends earlier results on the classical -ary sum-of-digits function obtained by Fouvry and Mauduit.
Soit une suite strictement croissante des entiers définie par récurrence et telle que Soit son polynôme caractéristique. Il est bien connu que tout entier positif possède une écriture glouton unique telle que pour qui satisfait . Ici les chiffres sont définis de manière récursive par la relation où . Dans cet article, nous étudions la somme des chiffres sous certains conditions naturelles sur la suite . En particulier, nous déterminons son niveau de distribution. Pour être plus précis, nous montrons que pour avec on a
pour tous et Dans ce cas, peut être calculé explicitement, et on obtient pour . Comme application nous montrons que si le coefficient n’est pas trop petit, alors a au plus deux facteurs premiers. En outre, en utilisant le crible de Bombieri, on en déduit un théorème des nombres presque premiers pour .
Notre travail étend les résultats antérieurs sur la fonction somme des chiffres classique en base obtenus par Fouvry and Mauduit.
Accepted:
Published online:
Keywords: Sum of digits, linear recurrence number system, level of distribution, almost prime
@article{JTNB_2022__34_2_449_0, author = {Madritsch, Manfred G. and Thuswaldner, J\"org M.}, title = {The level of distribution of the sum-of-digits function of linear recurrence number systems}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {449--482}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {2}, year = {2022}, doi = {10.5802/jtnb.1209}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1209/} }
TY - JOUR AU - Madritsch, Manfred G. AU - Thuswaldner, Jörg M. TI - The level of distribution of the sum-of-digits function of linear recurrence number systems JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 449 EP - 482 VL - 34 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1209/ DO - 10.5802/jtnb.1209 LA - en ID - JTNB_2022__34_2_449_0 ER -
%0 Journal Article %A Madritsch, Manfred G. %A Thuswaldner, Jörg M. %T The level of distribution of the sum-of-digits function of linear recurrence number systems %J Journal de théorie des nombres de Bordeaux %D 2022 %P 449-482 %V 34 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1209/ %R 10.5802/jtnb.1209 %G en %F JTNB_2022__34_2_449_0
Madritsch, Manfred G.; Thuswaldner, Jörg M. The level of distribution of the sum-of-digits function of linear recurrence number systems. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 449-482. doi : 10.5802/jtnb.1209. http://www.numdam.org/articles/10.5802/jtnb.1209/
[1] Restricted combinations and compositions, Fibonacci Q., Volume 14 (1976) no. 5, pp. 439-452 | MR | Zbl
[2] Distribution properties of -additive functions, J. Number Theory, Volume 60 (1996) no. 1, pp. 103-123 | DOI | MR | Zbl
[3] Combinatorial and probabilistic properties of systems of numeration, Ergodic Theory Dyn. Syst., Volume 36 (2016) no. 2, pp. 422-457 | DOI | MR | Zbl
[4] The average gap distribution for generalized Zeckendorf decompositions, Fibonacci Q., Volume 51 (2013) no. 1, pp. 13-27 | MR | Zbl
[5] Autour du système de numération d’Ostrowski, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001), pp. 209-239 Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000) | Zbl
[6] Gaussian behavior of the number of summands in Zeckendorf decompositions in small intervals, Fibonacci Q., Volume 52 (2014) no. 5, pp. 47-53 | MR | Zbl
[7] Représentations des entiers naturels et indépendance statistique. II, Ann. Inst. Fourier, Volume 31 (1981) no. 1, pp. 1-15 | DOI | Numdam | Zbl
[8] The distribution of the sum-of-digits function, J. Théor. Nombres Bordeaux, Volume 10 (1998) no. 1, pp. 17-32 | DOI | Numdam | MR | Zbl
[9] The parity of the sum-of-digits-function of generalized Zeckendorf representations, Fibonacci Q., Volume 36 (1998) no. 1, pp. 3-19 | MR | Zbl
[10] Möbius orthogonality for the Zeckendorf sum-of-digits function, Proc. Am. Math. Soc., Volume 146 (2018) no. 9, pp. 3679-3691 | DOI | Zbl
[11] The Zeckendorf expansion of polynomial sequences, J. Théor. Nombres Bordeaux, Volume 14 (2002) no. 2, pp. 439-475 | DOI | Numdam | MR | Zbl
[12] Méthodes de crible et fonctions sommes des chiffres, Acta Arith., Volume 77 (1996) no. 4, pp. 339-351 | DOI | Zbl
[13] Sommes des chiffres et nombres presque premiers, Math. Ann., Volume 305 (1996) no. 3, pp. 571-599 | DOI | MR | Zbl
[14] Opera de cribro, Colloquium Publications, 57, American Mathematical Society, 2010, xx+527 pages
[15] Finite beta-expansions, Ergodic Theory Dyn. Syst., Volume 12 (1992) no. 4, pp. 713-723 | DOI | MR | Zbl
[16] Odometers and systems of numeration, Acta Arith., Volume 70 (1995) no. 2, pp. 103-123 | DOI | MR | Zbl
[17] Contributions to digit expansions with respect to linear recurrences, J. Number Theory, Volume 36 (1990) no. 2, pp. 160-169 | DOI | MR | Zbl
[18] The weighted linear sieve and Selberg’s -method, Acta Arith., Volume 47 (1986) no. 1, pp. 71-96 | DOI | MR
[19] Sieves in number theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 43, Springer, 2001 | MR
[20] Ergodic properties of -adic Halton sequences, Ergodic Theory Dyn. Syst., Volume 35 (2015) no. 3, pp. 895-909 | DOI | MR | Zbl
[21] Distribution properties of digital expansions arising from linear recurrences, Math. Slovaca, Volume 53 (2003) no. 1, pp. 1-20 | MR | Zbl
[22] Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. Math., Volume 171 (2010) no. 3, pp. 1591-1646 | DOI | Zbl
[23] Topics in multiplicative number theory, Lecture Notes in Mathematics, 227, Springer, 1971, ix+178 pages | DOI
[24] Constructing a new class of low-discrepancy sequences by using the -adic transformation, Math. Comput. Simul., Volume 47 (1998) no. 2-5, pp. 403-418 IMACS Seminar on Monte Carlo Methods (Brussels, 1997) | DOI | MR
[25] On the -expansions of real numbers, Acta Math. Acad. Sci. Hung., Volume 11 (1960), pp. 401-416 | DOI | MR | Zbl
[26] On digit expansions with respect to linear recurrences, J. Number Theory, Volume 33 (1989) no. 2, pp. 243-256 | DOI | MR | Zbl
[27] Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., Volume 8 (1957), pp. 477-493 | DOI | MR | Zbl
[28] Mobius randomness and dynamics, Not. South Afr. Math. Soc., Volume 43 (2012) no. 2, pp. 89-97 | MR | Zbl
[29] Correlations for numeration systems, Ph. D. Thesis, Technical University of Vienna and Aix-Marseille Université (2014)
[30] The level of distribution of the Thue–Morse sequence (2018) (Preprint, available under https://arxiv.org/abs/1803.01689)
[31] Digit expansions and the distribution of related functions, 2000 (Master thesis, Technical University of Vienna)
[32] Parry expansions of polynomial sequences, Integers, Volume 2 (2002), A14, 28 pages | MR | Zbl
[33] Discrepancy bounds for -adic Halton sequences, Number theory—Diophantine problems, uniform distribution and applications, Springer, 2017, pp. 423-444 | DOI | Zbl
[34] Numbers with fixed sum of digits in linear recurrent number systems, Ramanujan J., Volume 14 (2007) no. 1, pp. 43-68 | DOI | MR | Zbl
[35] Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. R. Sci. Liège, Volume 41 (1972), pp. 179-182 | Zbl
Cited by Sources: