Soit
pour tous
Notre travail étend les résultats antérieurs sur la fonction somme des chiffres classique en base
Let
Here
Our work extends earlier results on the classical
Accepté le :
Publié le :
Mots-clés : Sum of digits, linear recurrence number system, level of distribution, almost prime
@article{JTNB_2022__34_2_449_0, author = {Madritsch, Manfred G. and Thuswaldner, J\"org M.}, title = {The level of distribution of the sum-of-digits function of linear recurrence number systems}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {449--482}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {2}, year = {2022}, doi = {10.5802/jtnb.1209}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1209/} }
TY - JOUR AU - Madritsch, Manfred G. AU - Thuswaldner, Jörg M. TI - The level of distribution of the sum-of-digits function of linear recurrence number systems JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 449 EP - 482 VL - 34 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1209/ DO - 10.5802/jtnb.1209 LA - en ID - JTNB_2022__34_2_449_0 ER -
%0 Journal Article %A Madritsch, Manfred G. %A Thuswaldner, Jörg M. %T The level of distribution of the sum-of-digits function of linear recurrence number systems %J Journal de théorie des nombres de Bordeaux %D 2022 %P 449-482 %V 34 %N 2 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1209/ %R 10.5802/jtnb.1209 %G en %F JTNB_2022__34_2_449_0
Madritsch, Manfred G.; Thuswaldner, Jörg M. The level of distribution of the sum-of-digits function of linear recurrence number systems. Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 2, pp. 449-482. doi : 10.5802/jtnb.1209. https://www.numdam.org/articles/10.5802/jtnb.1209/
[1] Restricted combinations and compositions, Fibonacci Q., Volume 14 (1976) no. 5, pp. 439-452 | MR | Zbl
[2] Distribution properties of
[3] Combinatorial and probabilistic properties of systems of numeration, Ergodic Theory Dyn. Syst., Volume 36 (2016) no. 2, pp. 422-457 | DOI | MR | Zbl
[4] The average gap distribution for generalized Zeckendorf decompositions, Fibonacci Q., Volume 51 (2013) no. 1, pp. 13-27 | MR | Zbl
[5] Autour du système de numération d’Ostrowski, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001), pp. 209-239 Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000) | Zbl
[6] Gaussian behavior of the number of summands in Zeckendorf decompositions in small intervals, Fibonacci Q., Volume 52 (2014) no. 5, pp. 47-53 | MR | Zbl
[7] Représentations des entiers naturels et indépendance statistique. II, Ann. Inst. Fourier, Volume 31 (1981) no. 1, pp. 1-15 | DOI | Numdam | Zbl
[8] The distribution of the sum-of-digits function, J. Théor. Nombres Bordeaux, Volume 10 (1998) no. 1, pp. 17-32 | DOI | Numdam | MR | Zbl
[9] The parity of the sum-of-digits-function of generalized Zeckendorf representations, Fibonacci Q., Volume 36 (1998) no. 1, pp. 3-19 | MR | Zbl
[10] Möbius orthogonality for the Zeckendorf sum-of-digits function, Proc. Am. Math. Soc., Volume 146 (2018) no. 9, pp. 3679-3691 | DOI | Zbl
[11] The Zeckendorf expansion of polynomial sequences, J. Théor. Nombres Bordeaux, Volume 14 (2002) no. 2, pp. 439-475 | DOI | Numdam | MR | Zbl
[12] Méthodes de crible et fonctions sommes des chiffres, Acta Arith., Volume 77 (1996) no. 4, pp. 339-351 | DOI | Zbl
[13] Sommes des chiffres et nombres presque premiers, Math. Ann., Volume 305 (1996) no. 3, pp. 571-599 | DOI | MR | Zbl
[14] Opera de cribro, Colloquium Publications, 57, American Mathematical Society, 2010, xx+527 pages
[15] Finite beta-expansions, Ergodic Theory Dyn. Syst., Volume 12 (1992) no. 4, pp. 713-723 | DOI | MR | Zbl
[16] Odometers and systems of numeration, Acta Arith., Volume 70 (1995) no. 2, pp. 103-123 | DOI | MR | Zbl
[17] Contributions to digit expansions with respect to linear recurrences, J. Number Theory, Volume 36 (1990) no. 2, pp. 160-169 | DOI | MR | Zbl
[18] The weighted linear sieve and Selberg’s
[19] Sieves in number theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 43, Springer, 2001 | MR
[20] Ergodic properties of
[21] Distribution properties of digital expansions arising from linear recurrences, Math. Slovaca, Volume 53 (2003) no. 1, pp. 1-20 | MR | Zbl
[22] Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. Math., Volume 171 (2010) no. 3, pp. 1591-1646 | DOI | Zbl
[23] Topics in multiplicative number theory, Lecture Notes in Mathematics, 227, Springer, 1971, ix+178 pages | DOI
[24] Constructing a new class of low-discrepancy sequences by using the
[25] On the
[26] On digit expansions with respect to linear recurrences, J. Number Theory, Volume 33 (1989) no. 2, pp. 243-256 | DOI | MR | Zbl
[27] Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., Volume 8 (1957), pp. 477-493 | DOI | MR | Zbl
[28] Mobius randomness and dynamics, Not. South Afr. Math. Soc., Volume 43 (2012) no. 2, pp. 89-97 | MR | Zbl
[29] Correlations for numeration systems, Ph. D. Thesis, Technical University of Vienna and Aix-Marseille Université (2014)
[30] The level of distribution of the Thue–Morse sequence (2018) (Preprint, available under https://arxiv.org/abs/1803.01689)
[31] Digit expansions and the distribution of related functions, 2000 (Master thesis, Technical University of Vienna)
[32] Parry expansions of polynomial sequences, Integers, Volume 2 (2002), A14, 28 pages | MR | Zbl
[33] Discrepancy bounds for
[34] Numbers with fixed sum of digits in linear recurrent number systems, Ramanujan J., Volume 14 (2007) no. 1, pp. 43-68 | DOI | MR | Zbl
[35] Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. R. Sci. Liège, Volume 41 (1972), pp. 179-182 | Zbl
- Primes as Sums of Fibonacci Numbers, Memoirs of the American Mathematical Society, Volume 305 (2025) no. 1537 | DOI:10.1090/memo/1537
Cité par 1 document. Sources : Crossref