Infinite series involving the reciprocal Fibonacci numbers may admit no algebraic dependence between each other over the rational numbers. In this note, we introduce an identity which reveals an algebraic dependence relation between two infinite series involving the reciprocal Fibonacci numbers. The identity was discovered from a peculiar description of an elliptic function, and this observation is generalized to produce similar identities on a large class of sequences defined by linear recurrences on three consecutive terms.
Les séries infinies impliquant les inverses des nombres de Fibonacci sont en général algébriquement indépendantes sur le corps des nombres rationnels. Dans la présente note, nous introduisons une identité qui révèle une relation de dépendance algébrique entre deux telles séries. L’identité a été découverte à partir d’une description spéciale d’une certaine fonction elliptique. Cette observation est généralisée pour produire des identités analogues pour une grande classe de suites définies par des récurrences linéaires portant sur trois termes consécutifs.
Revised:
Accepted:
Published online:
Keywords: Fibonacci sequence, elliptic curves, $q$-series
@article{JTNB_2022__34_2_483_0, author = {Chang, Sungkon}, title = {The {Fibonacci} sequence and an elliptic curve}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {483--495}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {2}, year = {2022}, doi = {10.5802/jtnb.1210}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1210/} }
TY - JOUR AU - Chang, Sungkon TI - The Fibonacci sequence and an elliptic curve JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 483 EP - 495 VL - 34 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1210/ DO - 10.5802/jtnb.1210 LA - en ID - JTNB_2022__34_2_483_0 ER -
%0 Journal Article %A Chang, Sungkon %T The Fibonacci sequence and an elliptic curve %J Journal de théorie des nombres de Bordeaux %D 2022 %P 483-495 %V 34 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1210/ %R 10.5802/jtnb.1210 %G en %F JTNB_2022__34_2_483_0
Chang, Sungkon. The Fibonacci sequence and an elliptic curve. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 483-495. doi : 10.5802/jtnb.1210. http://www.numdam.org/articles/10.5802/jtnb.1210/
[1] Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci. Paris, Volume 308 (1989) no. 19, pp. 539-541 | MR | Zbl
[2] On reciprocal series related to Fibonacci numbers with subscripts in arithmetic progression, Fibonacci Q., Volume 19 (1981), pp. 14-21 | MR | Zbl
[3] The space of convolution identities on divisor functions, Ramanujan J., Volume 54 (2021) no. 3, pp. 659-677 | DOI | MR | Zbl
[4] Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad., Volume 73 (1997) no. 7, pp. 140-142 | MR | Zbl
[5] Algebraic relations for reciprocal sums of Fibonacci numbers, Acta Arith., Volume 130 (2007) no. 1, pp. 37-60 | DOI | MR | Zbl
[6] Algebraic independence results for reciprocal sums of Fibonacci numbers, Acta Arith., Volume 148 (2011) no. 3, pp. 205-223 | DOI | MR | Zbl
[7] Elliptic curves, Mathematical Notes (Princeton), 40, Princeton University Press, 1992 | MR
[8] Invitation to arithmetic geometry, Graduate Studies in Mathematics, 9, American Mathematical Society, 1995 | MR
[9] Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, 5, American Mathematical Society, 1995
[10] Modular functions and transcendence problems, C. R. Acad. Sci. Paris, Volume 322 (1996) no. 10, pp. 909-914 | MR | Zbl
[11] On the Sum of Reciprocal Fibonacci Numbers, Fibonacci Q., Volume 46-47 (2008) no. 2, pp. 153-159 | MR | Zbl
[12] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 1986 | DOI
[13] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994 | DOI
[14] The reciprocal sums of even and odd terms in the Fibonacci sequence, J. Inequal. Appl., Volume 2015 (2015), 376, 13 pages | DOI | MR | Zbl
Cited by Sources: