Differential Geometry
On extrinsic symmetric spaces with zero mean curvature in Minkowski space-time
Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 471-475.

For an extrinsic symmetric space M in Minkowski space-time, we prove that if M is spacelike with zero mean curvature, then it is totally geodesic and if M is timelike with zero mean curvature, then it is totally geodesic or it is a flat hypersurface.

Pour un espace symétrique extrinsèque M dans lʼespace-temps de Minkowski, nous prouvons que, si M est de type espace et à courbure moyenne nulle, alors M est totalement géodésique, tandis que, si M est de type temps à courbure moyenne nulle, il sʼagit alors dʼune sous-variété totalement géodésique ou dʼune hypersurface.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.06.005
Kim, Jong Ryul 1

1 Department of Mathematics, Kunsan National University, Kunsan, 573-701, Republic of Korea
@article{CRMATH_2013__351_11-12_471_0,
     author = {Kim, Jong Ryul},
     title = {On extrinsic symmetric spaces with zero mean curvature in {Minkowski} space-time},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {471--475},
     publisher = {Elsevier},
     volume = {351},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crma.2013.06.005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.06.005/}
}
TY  - JOUR
AU  - Kim, Jong Ryul
TI  - On extrinsic symmetric spaces with zero mean curvature in Minkowski space-time
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 471
EP  - 475
VL  - 351
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.06.005/
DO  - 10.1016/j.crma.2013.06.005
LA  - en
ID  - CRMATH_2013__351_11-12_471_0
ER  - 
%0 Journal Article
%A Kim, Jong Ryul
%T On extrinsic symmetric spaces with zero mean curvature in Minkowski space-time
%J Comptes Rendus. Mathématique
%D 2013
%P 471-475
%V 351
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.06.005/
%R 10.1016/j.crma.2013.06.005
%G en
%F CRMATH_2013__351_11-12_471_0
Kim, Jong Ryul. On extrinsic symmetric spaces with zero mean curvature in Minkowski space-time. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 471-475. doi : 10.1016/j.crma.2013.06.005. http://www.numdam.org/articles/10.1016/j.crma.2013.06.005/

[1] Cahen, M.; Parker, M. Pseudo-Riemannian symmetric spaces, Mem. Amer. Math. Soc., Volume 229 (1980), pp. 1-108

[2] Eschenburg, J.-H.; Heintze, E. Extrinsic symmetric spaces and orbits of s-representations, Manuscr. Math., Volume 88 (1995), pp. 517-524

[3] Ferus, D. Produkt-Zerlegung von Immersionen mit paralleler zweiter Fundamentalform, Math. Ann., Volume 211 (1974), pp. 1-5

[4] Ferus, D. Immersions with parallel second fundamental form, J. Differential Geom., Volume 5 (1974), pp. 333-340

[5] Ferus, D. Symmetric submanifolds of Euclidean space, Math. Ann., Volume 247 (1980), pp. 81-93

[6] Kim, J.R.; Eschenburg, J.-H. Indefinite extrinsic symmetric spaces, Manuscr. Math., Volume 135 (2011), pp. 203-214

[7] Neukirchner, T. Solvable pseudo-Riemannian symmetric spaces | arXiv

[8] Strübing, W. Symmetric submanifolds of Riemannian manifolds, Math. Ann., Volume 245 (1979), pp. 37-44

Cited by Sources: