Differential Geometry
Isometric deformations of the K14-flow translators in R3 with helicoidal symmetry
Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 477-482.

The height functions of K14-flow translators in the Euclidean space R3 solve the classical Monge–Ampère equation fxxfyyfxy2=1. We explicitly and geometrically determine the moduli space of all helicoidal K14-flow translators, which are generated from planar curves by the action of helicoidal groups.

Les fonctions de hauteur des translateurs du flot K1/4 de R3 résolvent lʼéquation de Monge–Ampère classique fxxfyyfxy2=1. Nous déterminons de manière géométrique explicite lʼespace des modules de tous les translateurs à symétrie hélicoïdale du flot K1/4, qui sont engendré à partir de courbes planes par lʼaction de groupes hélicoïdaux.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2013.06.006
Lee, Hojoo 1

1 Korea Institute for Advanced Study, 207-43 Cheongryangri 2-dong, Dongdaemun-gu, Seoul 130-722, Republic of Korea
@article{CRMATH_2013__351_11-12_477_0,
     author = {Lee, Hojoo},
     title = {Isometric deformations of the $ {\mathcal{K}}^{\frac{1}{4}}$-flow translators in $ {\mathbb{R}}^{3}$ with helicoidal symmetry},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {477--482},
     publisher = {Elsevier},
     volume = {351},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crma.2013.06.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2013.06.006/}
}
TY  - JOUR
AU  - Lee, Hojoo
TI  - Isometric deformations of the $ {\mathcal{K}}^{\frac{1}{4}}$-flow translators in $ {\mathbb{R}}^{3}$ with helicoidal symmetry
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 477
EP  - 482
VL  - 351
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2013.06.006/
DO  - 10.1016/j.crma.2013.06.006
LA  - en
ID  - CRMATH_2013__351_11-12_477_0
ER  - 
%0 Journal Article
%A Lee, Hojoo
%T Isometric deformations of the $ {\mathcal{K}}^{\frac{1}{4}}$-flow translators in $ {\mathbb{R}}^{3}$ with helicoidal symmetry
%J Comptes Rendus. Mathématique
%D 2013
%P 477-482
%V 351
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2013.06.006/
%R 10.1016/j.crma.2013.06.006
%G en
%F CRMATH_2013__351_11-12_477_0
Lee, Hojoo. Isometric deformations of the $ {\mathcal{K}}^{\frac{1}{4}}$-flow translators in $ {\mathbb{R}}^{3}$ with helicoidal symmetry. Comptes Rendus. Mathématique, Volume 351 (2013) no. 11-12, pp. 477-482. doi : 10.1016/j.crma.2013.06.006. http://www.numdam.org/articles/10.1016/j.crma.2013.06.006/

[1] Altschuler, S.J.; Wu, L.F. Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differential Equations, Volume 2 (1994) no. 1, pp. 101-111

[2] Andrews, B. Contraction of convex hypersurfaces by their affine normal, J. Differential Geom., Volume 43 (1996) no. 2, pp. 207-230

[3] Andrews, B. Gauss curvature flow: the fate of the rolling stones, Invent. Math., Volume 138 (1999) no. 1, pp. 151-161

[4] Andrews, B. Motion of hypersurfaces by Gauss curvature, Pacific J. Math., Volume 195 (2000) no. 1, pp. 1-34

[5] Calabi, E. Hypersurfaces with maximal affinely invariant area, Amer. J. Math., Volume 104 (1982) no. 1, pp. 91-126

[6] Chow, B. Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom., Volume 22 (1985) no. 1, pp. 117-138

[7] Clutterbuck, J.; Schnürer, O.C.; Schulze, F. Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differential Equations, Volume 29 (2007) no. 3, pp. 281-293

[8] do Carmo, M.P.; Dajczer, M. Helicoidal surfaces with constant mean curvature, Tohoku Math. J. (2), Volume 34 (1982) no. 3, pp. 425-435

[9] Donaldson, S. A generalised Joyce construction for a family of nonlinear partial differential equations, J. Gökova Geom. Topol. GGT, Volume 3 (2009), pp. 1-8

[10] Eells, J. The surfaces of Delaunay, Math. Intelligencer, Volume 9 (1987) no. 1, pp. 53-57

[11] Firey, W.J. Shapes of worn stones, Mathematika, Volume 21 (1974), pp. 1-11

[12] Haak, G. On a theorem by do Carmo and Dajczer, Proc. Amer. Math. Soc., Volume 126 (1998) no. 5, pp. 1547-1548

[13] Halldorsson, H.P. Helicoidal surfaces rotating/translating under the mean curvature flow, Geom. Dedicata, Volume 162 (2013), pp. 45-65

[14] Harvey, R.; Lawson, H. Jr. Calibrated geometries, Acta Math., Volume 148 (1982), pp. 47-157

[15] Harvey, R.; Lawson, H. Jr. Split special Lagrangian geometry | arXiv

[16] Jörgens, K. Uber Die Losungen der Differentialgleichung rts2=1, Math. Ann., Volume 127 (1954), pp. 130-134

[17] Koiso, M. The Delaunay surfaces, Bull. Kyoto Univ. Ed. Ser. B, Volume 97 (2000), pp. 13-33

[18] Lawson, H.B. Complete minimal surfaces in S3, Ann. of Math. (2), Volume 92 (1970), pp. 335-374

[19] Lee, H. Minimal surface systems, maximal surface systems and special Lagrangian equations, Trans. Amer. Math. Soc., Volume 365 (2013) no. 7, pp. 3775-3797

[20] Mealy, J. Volume maximization in semi-Riemannian manifolds, Indiana Univ. Math. J., Volume 40 (1991), pp. 793-814

[21] Spivak, M. A Comprehensive Introduction to Differential Geometry, vol. IV, Publish or Perish, Inc., Wilmington, NC, 1979

[22] Trudinger, N.; Wang, X.-J. The affine Plateau problem, J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 253-289

[23] Tso, K. Deforming a hypersurface by its Gauss–Kronecker curvature, Comm. Pure Appl. Math., Volume 38 (1985) no. 6, pp. 867-882

[24] Urbas, J. Complete noncompact self-similar solutions of Gauss curvature flows. I. Positive powers, Math. Ann., Volume 311 (1998) no. 2, pp. 251-274

Cited by Sources:

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (Ministry of Education, Science and Technology) [NRF-2011-357-C00007].