[Reconstruction du flux et estimations a posteriori pour la méthode de Galerkine discontinue sur des maillages non-coïncidants avec mailles polygonales]
Les méthodes de Galerkine discontinues sont bien adaptées pour traiter des maillages non-coïncidants avec mailles polygonales. Nous présentons dans cette Note une reconstruction
Discontinuous Galerkin methods handle very well general polygonal and nonmatching meshes. We present in this Note a
Accepté le :
Publié le :
@article{CRMATH_2009__347_7-8_441_0, author = {Ern, Alexandre and Vohral{\'\i}k, Martin}, title = {Flux reconstruction and a posteriori error estimation for discontinuous {Galerkin} methods on general nonmatching grids}, journal = {Comptes Rendus. Math\'ematique}, pages = {441--444}, publisher = {Elsevier}, volume = {347}, number = {7-8}, year = {2009}, doi = {10.1016/j.crma.2009.01.017}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2009.01.017/} }
TY - JOUR AU - Ern, Alexandre AU - Vohralík, Martin TI - Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids JO - Comptes Rendus. Mathématique PY - 2009 SP - 441 EP - 444 VL - 347 IS - 7-8 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2009.01.017/ DO - 10.1016/j.crma.2009.01.017 LA - en ID - CRMATH_2009__347_7-8_441_0 ER -
%0 Journal Article %A Ern, Alexandre %A Vohralík, Martin %T Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids %J Comptes Rendus. Mathématique %D 2009 %P 441-444 %V 347 %N 7-8 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2009.01.017/ %R 10.1016/j.crma.2009.01.017 %G en %F CRMATH_2009__347_7-8_441_0
Ern, Alexandre; Vohralík, Martin. Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids. Comptes Rendus. Mathématique, Tome 347 (2009) no. 7-8, pp. 441-444. doi : 10.1016/j.crma.2009.01.017. https://www.numdam.org/articles/10.1016/j.crma.2009.01.017/
[1] A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal., Volume 45 (2007) no. 4, pp. 1777-1798
[2] M. Ainsworth, R. Rankin, Fully computable error bounds for discontinuous Galerkin finite element approximations on meshes with an arbitrary number of levels of hanging nodes, Research Report 9, University of Strathclyde, 2008
[3] Equilibrated error estimators for discontinuous Galerkin methods, Numer. Methods Partial Differential Equations, Volume 24 (2008) no. 5, pp. 1236-1252
[4] An accurate
[5] A. Ern, A.F. Stephansen, M. Vohralík, Improved energy norm a posteriori error estimation based on flux reconstruction for discontinuous Galerkin methods, HAL Preprint 00193540 version 1 (14-11-2007), 2007
[6] A. Ern, A.F. Stephansen, M. Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion–reaction problems, HAL Preprint 00193540, submitted for publication, 2008
[7] A. Ern, A.F. Stephansen, P. Zunino, A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity, IMA J. Numer. Anal., (electronic), 2008 | DOI
[8] A posteriori error estimators for locally conservative methods of nonlinear elliptic problems, Appl. Numer. Math., Volume 57 (2007) no. 9, pp. 1065-1080
[9] A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal., Volume 42 (2004) no. 4, pp. 1394-1414
Cité par Sources :