Partial Differential Equations
On instability for the cubic nonlinear Schrödinger equation
Comptes Rendus. Mathématique, Volume 344 (2007) no. 8, pp. 483-486.

We study the flow map associated to the cubic, defocusing, Schrödinger equation in space dimension at least three. We consider initial data of arbitrary size in Hs, where 0<s<sc, sc the critical index, and perturbations in Hσ, where σ<sc is independent of s. We show an instability mechanism in some Sobolev spaces of order smaller than s. The analysis relies on two features of super-critical geometric optics: the creation of oscillation, and the ghost effect.

Nous étudions l'équation de Schrödinger cubique défocalisante en dimension d'espace au moins trois. Pour des données initiales de taille quelconque dans Hs, 0<s<sc, où sc est l'indice critique, nous considérons des perturbations dans Hσ, avec σ<sc indépendant de s. On montre une instabilité dans des espaces de Sobolev d'ordre inférieur à s. La preuve repose sur une analyse de type optique géométrique en régime sur-critique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.03.006
Carles, Rémi 1

1 CNRS and Université Montpellier 2, Mathématiques, CC 051, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
@article{CRMATH_2007__344_8_483_0,
     author = {Carles, R\'emi},
     title = {On instability for the cubic nonlinear {Schr\"odinger} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {483--486},
     publisher = {Elsevier},
     volume = {344},
     number = {8},
     year = {2007},
     doi = {10.1016/j.crma.2007.03.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2007.03.006/}
}
TY  - JOUR
AU  - Carles, Rémi
TI  - On instability for the cubic nonlinear Schrödinger equation
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 483
EP  - 486
VL  - 344
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2007.03.006/
DO  - 10.1016/j.crma.2007.03.006
LA  - en
ID  - CRMATH_2007__344_8_483_0
ER  - 
%0 Journal Article
%A Carles, Rémi
%T On instability for the cubic nonlinear Schrödinger equation
%J Comptes Rendus. Mathématique
%D 2007
%P 483-486
%V 344
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2007.03.006/
%R 10.1016/j.crma.2007.03.006
%G en
%F CRMATH_2007__344_8_483_0
Carles, Rémi. On instability for the cubic nonlinear Schrödinger equation. Comptes Rendus. Mathématique, Volume 344 (2007) no. 8, pp. 483-486. doi : 10.1016/j.crma.2007.03.006. http://www.numdam.org/articles/10.1016/j.crma.2007.03.006/

[1] Burq, N.; Gérard, P.; Tzvetkov, N. Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. (4), Volume 38 (2005) no. 2, pp. 255-301

[2] Carles, R. Geometric optics and instability for semi-classical Schrödinger equations, Arch. Ration. Mech. Anal., Volume 183 (2007) no. 3, pp. 525-553

[3] Cazenave, T.; Weissler, F. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs, Nonlinear Anal. TMA, Volume 14 (1990), pp. 807-836

[4] M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press. See also | arXiv

[5] Grenier, E. Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc. Amer. Math. Soc., Volume 126 (1998) no. 2, pp. 523-530

[6] Sone, Y.; Aoki, K.; Takata, S.; Sugimoto, H.; Bobylev, A.V. Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: examination by asymptotic analysis and numerical computation of the Boltzmann equation, Phys. Fluids, Volume 8 (1996) no. 2, pp. 628-638

Cited by Sources: