Partial Differential Equations
The precise boundary trace of solutions of a class of supercritical nonlinear equations
Comptes Rendus. Mathématique, Volume 344 (2007) no. 3, pp. 181-186.

We construct and study the properties of the precise boundary trace of positive solutions of Δu+uq=0 in a smooth bounded domain of RN, in the supercritical case qqc=(N+1)/(N1).

Nous construisons et étudions les propriétés de la trace au bord précise des solutions positives de Δu+uq=0 dans un domaine régulier de RN, dans le cas sur-critique qqc=(N+1)/(N1).

Accepted:
Published online:
DOI: 10.1016/j.crma.2006.11.028
Marcus, Moshe 1; Véron, Laurent 2

1 Department of Mathematics, Technion, Haifa 32000, Israel
2 Laboratoire de mathématiques et physique théorique, faculté des sciences, parc de Grandmont, 37200 Tours, France
@article{CRMATH_2007__344_3_181_0,
     author = {Marcus, Moshe and V\'eron, Laurent},
     title = {The precise boundary trace of solutions of a class of supercritical nonlinear equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {181--186},
     publisher = {Elsevier},
     volume = {344},
     number = {3},
     year = {2007},
     doi = {10.1016/j.crma.2006.11.028},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2006.11.028/}
}
TY  - JOUR
AU  - Marcus, Moshe
AU  - Véron, Laurent
TI  - The precise boundary trace of solutions of a class of supercritical nonlinear equations
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 181
EP  - 186
VL  - 344
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.11.028/
DO  - 10.1016/j.crma.2006.11.028
LA  - en
ID  - CRMATH_2007__344_3_181_0
ER  - 
%0 Journal Article
%A Marcus, Moshe
%A Véron, Laurent
%T The precise boundary trace of solutions of a class of supercritical nonlinear equations
%J Comptes Rendus. Mathématique
%D 2007
%P 181-186
%V 344
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.11.028/
%R 10.1016/j.crma.2006.11.028
%G en
%F CRMATH_2007__344_3_181_0
Marcus, Moshe; Véron, Laurent. The precise boundary trace of solutions of a class of supercritical nonlinear equations. Comptes Rendus. Mathématique, Volume 344 (2007) no. 3, pp. 181-186. doi : 10.1016/j.crma.2006.11.028. http://www.numdam.org/articles/10.1016/j.crma.2006.11.028/

[1] Adams, D.R.; Hedberg, L.I. Function Spaces and Potential Theory, Grundlehren Math. Wiss., vol. 314, Springer, 1996

[2] Dynkin, E.B. Diffusions, Superdiffusions and Partial Differential Equations, Colloquium Publications, vol. 50, Amer. Math. Soc., Providence, RI, 2002

[3] Dynkin, E.B. Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations, Colloquium Publications, vol. 34, Amer. Math. Soc., Providence, RI, 2004

[4] Dynkin, E.B.; Kuznetsov, S.E. Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl. Math., Volume 49 (1996), pp. 125-176

[5] Dynkin, E.B.; Kuznetsov, S.E. Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm. Pure Appl. Math., Volume 51 (1998), pp. 897-936

[6] Kuznetsov, S.E. σ-moderate solutions of Lu=uα and fine trace on the boundary, C. R. Acad. Sci. Paris, Ser. I, Volume 326 (1998), pp. 1189-1194

[7] Legall, J.F. The Brownian snake and solutions of Δu=u2 in a domain, Probab. Theory Related Fields, Volume 102 (1995), pp. 393-432

[8] Legall, J.F. Spatial Branching Processes, Random Snakes and Partial Differential Equations, Birkhäuser, Basel, 1999

[9] Marcus, M.; Véron, L. The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Rat. Mech. Anal., Volume 144 (1998), pp. 201-231

[10] Marcus, M.; Véron, L. The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl., Volume 77 (1998), pp. 481-524

[11] Marcus, M.; Véron, L. Removable singularities and boundary trace, J. Math. Pures Appl., Volume 80 (2000), pp. 879-900

[12] Marcus, M.; Véron, L. Capacitary estimates of positive solutions of semilinear elliptic equations with absorption, J. Eur. Math. Soc., Volume 6 (2004), pp. 483-527

[13] Mselati, B. Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation, Mem. Amer. Math. Soc., Volume 168 (2004)

Cited by Sources: