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Abstract

We construct and study the properties of the precise boundary trace of positive solutions of −�u + uq = 0 in a smooth bounded
domain of R

N , in the supercritical case q � qc = (N + 1)/(N − 1). To cite this article: M. Marcus, L. Véron, C. R. Acad. Sci.
Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

La trace au bord précise des solutions d’une classe d’équations non linéaires sur-critiques. Nous construisons et étudions
les propriétés de la trace au bord précise des solutions positives de −�u + uq = 0 dans un domaine régulier de R

N , dans le cas
sur-critique q � qc = (N + 1)/(N − 1). Pour citer cet article : M. Marcus, L. Véron, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit Ω un ouvert borné de R
N de bord de classe C2 et u ∈ L

q

loc(Ω) (q > 1) une solution positive de

−�u + |u|q−1u = 0. (1)

Il est bien connu que u possède une trace au bord dans la classe des mesures de Borel ayant la régularité extérieure au
sens classique. Si q � qc cette notion de trace n’est pas suffisante pour déterminer de façon unique la solution de (1).
Contrairement à la trace fine [5], qui s’exprime en termes probabilistes et est limitée au cas qc � q � 2, la notion
de trace précise que nous développons est valable pour tout q � qc . Elle est fondée sur la topologie fine Tq associée
à la capacité de Bessel C2/q,q ′ sur ∂Ω . Notons ρ(x) := dist(x, ∂Ω) et Ωβ = {x ∈ Ω: ρ(x) < β}, Ω ′

β = ω \ Ωβ ,
Σβ = ∂Ω ′

β . Il existe β0 > 0 tel que pour tout x ∈ Ωβ0 il existe un unique σ(x) ∈ Ω tel que ρ(x) = |x − σ(x)|. Si

Q ⊂ ∂Ω est Tq -ouvert, on note Σβ(Q) = {x ∈ Σβ : σ(x) ∈ Q}, et, si u ∈ C(Ω), u
Q
β désigne la solution de (1) dans

Ω ′
β valant uχ

Σβ(Q)
sur Σβ . La dichotomie suivante est à la base de nos résultats :
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Théorème 1. Soit u une solution positive de (1). Si Q ⊂ ∂Ω est Tq -ouvert et si la limite suivante existe, on pose
L(Q) = limβ→0

∫
Σβ(Q)

udS. Alors,
ou bien, L(Q) = ∞ pour tout voisinage Tq -ouvert Q de ξ ,
ou bien, il existe un voisinage Tq -ouvert Q de ξ tel que L(Q) < ∞.
Le premier cas se produit si et seulement si, pour tout Tq - voisinage Q de ξ ,∫

A

uqρ(x)dx = ∞, A = (0, β0) × Q. (2)

Un point ξ est dit singulier (resp. régulier) si le premier (resp. le deuxième) cas se produit. L’ensemble des point
singuliers (resp. réguliers) noté S(u) (resp. R(u) est Tq -fermé (resp. Tq -ouvert). Si A ⊂ ∂Ω , nous notons Ã la
fermeture de A dans topologie Tq .

Théorème 2. Il existe une mesure de Borel positive μ sur ∂Ω possédant les propriétés suivantes :

(i) Pour tout σ ∈R(u) il existe un voisinage Tq -ouvert Q de σ et une solution modérée w de (1) tels que Q̃ ⊂ R(u),
μ(Q̃) < ∞ et

u
Q
β → w localement uniformément dans Ω, (trw)χQ = μχQ. (3)

(ii) μ a la régularité extérieure pour la topologie Tq et est absolument continue par rapport à la capacité C2/q,q ′ sur
les sous-ensembles Tq -ouverts où elle est bornée.

Le couple μ,S(u) est, par définition, la trace précise de u, notée tr(u), qui peut être aussi représentée par la
mesure de Borel ν définie par ν = μ sur R(u) et ν(A) = ∞ pour tout borélien A tel que A ∩ S(u) �= ∅ ; ν a les
propriétés suivantes : (i) Elle a la régularité extérieure pour la topologie Tq . (ii) Elle est absolument continue par
rapport à la capacité C2/q,q ′ au sens où pour tout ensemble Tq -ouvert Q et tout borélien A, C2/q,q ′(A) = 0 implique
ν(Q) = ν(Q \ A). Une mesure de Borel vérifiant (i) et (ii) est dite q-parfaite. Nous donnons alors la condition
nécessaire et suffisante d‘existence, ainsi qu’un résultat d’unicité, de la solution du problème aux limites généralisé

−�u + uq = 0, u > 0 dans Ω, tr(u) = ν. (4)

Théorème 3. Soit ν une mesure de Borel sur ∂Ω , bornée ou non. Le problème aux limites (4) a une solution si et
seulement si ν est q-parfaite. Quand c’est le cas, une solution de (4) est donnée par

U = v ⊕ UF , v = sup{uνχQ
: Q ∈Fν}, (5)

où Fν := {Q: Qq-ouvert, ν(Q) < ∞}, G := ⋃
Fν

Q, F = ∂Ω \ G, UF est la solution maximale s’annullant sur
∂Ω \F et v ⊕UF est la plus grande solution de (1) inférieure à la sur-solution v +UF . Enfin U est σ -modérée, c’est
la solution maximale du problème (4) dont c’est l’unique solution σ -modérée.

1. Introduction and statement of results

In this Note we present a theory of boundary trace of positive solutions of the equation

−�u + |u|q−1u = 0 (6)

in a bounded domain Ω ⊂ R
N of class C2. A function u is a solution if u ∈ L

q

loc(Ω) and the equation holds in the
distribution sense.

Equations of this type have been intensively studied in the last ten years in the context of boundary trace theory
and the associated boundary value problem. In the subcritical case, 1 < q < qc = (N + 1)/(N − 1), the problem is
well understood thanks to the works of Le Gall [7], using a probabilistic approach which imposes q � 2, and Mar-
cus and Véron [9] by using an analytic approach, with no restriction. In the supercritical case q � qc , the notions
of removable sets and admissible Radon measures are implemented by Le Gall, by Dynkin and Kuznetsov [4] and
by Marcus and Véron [10,11]. But in 1997 Le Gall showed that the standard trace theory is not appropriate because
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many solutions may have the same boundary trace. Following this observation, a theory of fine trace, based upon a
probabilistic formulation, was introduced by Dynkin and Kuznetsov [5] who showed that, for q � 2, the fine trace
theory is satisfactory in the family of so-called σ -moderate solutions. Later on it was shown by Mselati [13], com-
bining Le Gall’s Brownian snake method [8] and Dynkin’s approach [2] that, in the case q = 2, all positive solutions
are σ -moderate. By analytical methods Marcus and Véron [12] proved that, for all q � qc and every compact set
K ⊂ ∂Ω , the maximal solution of (6) vanishing on ∂Ω \K is σ -moderate. Their proof was based on the derivation of
sharp capacitary estimates for the maximal solution. In continuation, Dynkin [3], using the estimates of Marcus and
Veron [12], extended Mselati’s result to all case q � 2. For q > 2 the problem remains open.

Our definition of boundary trace is based on the fine topology associated with the Bessel capacity C2/q,q ′ on ∂Ω ,
denoted by Tq . Here q ′ = q/(q − 1). For the definition of this topology see [1]. The Tq -closure of a set E will be
denoted by Ẽ. We also need the following notation.

Notation 1.1.

(a) For every x ∈ R
N and every β > 0 put ρ(x) := dist(x, ∂Ω) and Ωβ = {x ∈ Ω: ρ(x) < β}, Ω ′

β = Ω \ Ωβ ,
Σβ = ∂Ω ′

β.

(b) There exists a positive number β0 such that, for every x ∈ Ωβ0 there exists a unique point ξ ∈ ∂Ω such that
dist(x, ξ) = ρ(x). Put σ(x) := ξ .

(c) If Q is a Tq -open subset of ∂Ω and u ∈ C(∂Ω) we denote by u
Q
β the solution of (6) in Ω ′

β with boundary data
h = u on Σβ(Q) = {x ∈ Σβ : σ(x) ∈ Q}.

Recall that a solution u is moderate if |u| is dominated by a harmonic function. When this is the case, u possesses
a boundary trace (denoted by tru) given by a bounded Borel measure. A positive solution u is σ -moderate if there
exists an increasing sequence of moderate solutions {un} such that un ↑ u. This notion was introduced by Dynkin and
Kuznetsov [5] (see also [6] and [2]).

If ν is a bounded Borel measure on ∂Ω , the problem

−�u + uq = 0 in Ω, tru = ν on ∂Ω (7)

possesses a (unique) solution if and only if ν vanishes on sets of C2/q,q ′ -capacity zero, (see [11] and the references
therein). The solution is denoted by uν .

The set of positive solutions of (6) in Ω will be denoted by U(Ω). It is well known that this set is compact in the
topology of C(Ω), i.e., relative to local uniform convergence in Ω . If u,v ∈ U(Ω), we denote by u ⊕ v the largest
solution dominated by u + v.

The first result displays a dichotomy which is the basis for our definition of boundary trace:

Theorem 1.1. Let u ∈ U(Ω) and let ξ ∈ ∂Ω . If Q ⊂ ∂Ω is a Tq -open set then the following limit exists, LQ =
limβ→0

∫
Σβ(Q)

udS. Furthermore,
either LQ = ∞ for every Tq -open neighborhood Q of ξ ,
or there exists a Tq -open neighborhood Q such that LQ < ∞.

The first case occurs if and only if , for every Tq -neighborhood Q of ξ ,

∫
A

uqρ(x)dx = ∞, A = (0, β0) × Q. (8)

A point ξ ∈ ∂Ω is called a singular point of u in the first case and a regular point otherwise. The set of singular
points is denoted by S(u) and its complement in ∂Ω by R(u). Our next result provides additional information on the
behavior of solutions near the regular boundary set:

Theorem 1.2. Let u ∈ U(Ω). Then R(u) is Tq -open and there exists a non-negative Borel measure μ on ∂Ω possess-
ing the following properties.
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(i) For every σ ∈R(u) there exist a Tq -open neighborhood Q of σ and a moderate solution w such that Q̃ ⊂ R(u),
μ(Q̃) < ∞ and

u
Q
β → w locally uniformly in Ω, (trw)χQ = μχQ. (9)

(ii) μ is outer regular relative to Tq and absolutely continuous relative to C2/q,q ′ on Tq -open sets on which it is
bounded.

Based on these results we define the precise boundary trace of u as the couple (μ,S(u)). The trace can also be
represented by a Borel measure ν defined as follows. For every Borel set A ⊂ ∂Ω :

ν(A) = μ(A) if A ⊂ R(u), ν(A) = ∞ otherwise. (10)

We denote trc u = (μ,S(u)) and tru = ν.
Let ν be a positive Borel measure on ∂Ω . We say that μ is q-perfect if:
(i) μ is outer regular relative to Tq . (ii) μ is essentially absolutely continuous relative to C2/q,q ′ , i.e., if Q is

Tq -open and C2/q,q ′(A) = 0 then ν(Q) = ν(Q \ A).

The second property implies that, if ν(Q \ A) < ∞ then ν(A ∩ Q) = 0.
We have the following existence and uniqueness results for the (generalized) boundary value problem (7), where

tru = ν is understood as in (10):

Theorem 1.3. Let ν be a positive Borel measure, possibly unbounded. Then (7) possesses a solution if and only if ν is
q-perfect. When this condition holds, a solution of (7) is given by

U = v ⊕ UF , v = sup{uνχQ
: Q ∈Fν}, (11)

where Fν := {Q: QTq -open, ν(Q) < ∞}, G := ⋃
Fν

Q, F = ∂Ω \ G and UF is the maximal solution vanishing on
∂Ω \ F .

Theorem 1.4. Let ν be a q-perfect measure on ∂Ω . Then the solution U of problem (7) defined by (11) is σ -moderate
and it is the maximal solution with boundary trace ν. Furthermore, the solution is unique in the class of σ -moderate
solutions.

For qc � q � 2, results similar to those stated in the last two theorems, were obtained by Dynkin and Kuznetsov
[5] and Kuznetsov [6], based on their definition of fine trace. However, by their results, the prescribed trace is attained
only up to equivalence, i.e., up to a set of capacity zero. According to the present results, the solution attains precisely
the prescribed trace and this applies to all q � qc. The relation between the Dynkin–Kuznetsov definition and the
definition presented here, is not yet clear.

2. Main ideas of proofs

We need some additional notation. Let F ⊂ ∂Ω be a Tq -closed set and let UF denote the maximal solution vanish-
ing on ∂Ω \ F . Then inf(u,UF ) is a supersolution of (6) and the largest solution dominated by it is denoted by [u]F .

The notation E
q⊂ F means C2/q,q ′(E \ F) = 0.

On the proof of Theorem 1.1. One of the essential features of boundary trace is its local nature. This is used in the
present proof, through the following lemmas.

Lemma 2.1. Let u ∈ U and let {βn} be a sequence converging to zero such that w = limn→∞ u
Q
βn

exists, (see Nota-
tion 1.1). Then [u]F � w � [u]Q̃, for every Tq -closed subset F of Q.

Lemma 2.2. Let u ∈ U . Suppose that there exists a Tq -open set Q ⊂ ∂Ω and a sequence {βn} converging to zero such
that supn

∫
udS < ∞.
Σβn(Q)
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Then, for any Tq -closed set F
q⊂ Q, [u]F is a moderate solution. If D is a Tq -open set such that D̃

q⊂ Q, there
exists a bounded Borel measure μD on ∂Ω such that μD(∂Ω \ D̃) = 0 and

u(β, ·)χD ⇀ μD weakly relative to C(∂Ω) as β → 0. (12)

The dichotomy stated in the theorem is derived by combining these lemmas.

On the proof of Theorem 1.2. Theorem 1.1 and Lemma 2.2 imply that for every point σ ∈ R(u) there exists a
Tq -open neighborhood D of σ and a bounded Borel measure μD on ∂Ω such that (12) holds. It is not difficult to verify
that, if σ,σ ′ ∈ R(u) and D,D′ are Tq -open neighborhoods related to these points as above then, the corresponding
measures μD and μD′ are compatible: if E is a Borel subset of D ∩ D′ then μD(E) = μD′(E). The existence of a
measure μ0, which vanishes outside R(u) and satisfies assertion (i) is easily deduced from these facts.

With σ and D as above, if Q is a Tq -open set such that Q̃
q⊂ D then [u]Q is moderate and μ0χQ̃ = μDχQ̃ = tr[u]Q.

This implies that μ0 is absolutely continuous relative to C2/q,q ′ and outer regular. On the other hand, if A is a Tq -open
set such that μ0(A) < ∞, it follows that on every Tq -open set Q such that C2/q,q ′(Q̃ \ A) = 0, (9) holds with respect
to μ0. Thus μ0 satisfies (ii) in R(u). The measure μ defined by

μ(E) = inf
{
μ0(D): ∀D Tq -open, E ⊂ D

}
(13)

satisfies (ii) on the whole boundary. It is called the Tq -regularization of μ0.

On the proof of Theorem 1.3. The main ingredients in this proof are provided by Theorem 1.2 (ii) and the following
lemmas. See [1] for the definition of C2/q,q ′ -thick points.

Lemma 2.3. Let F ⊂ ∂Ω be a q-closed set. Then S(UF ) = bq(F ) where bq(F ) denotes the set of C2/q,q ′ -thick points
of F .

Proof. Let ξ be a point on ∂Ω such that F is C2/q,q ′ -thin at ξ . Then there exists a Tq -open neighborhood Q such
that C2/q,q ′(Q̃ ∩ F) = 0 and consequently [UF ]Q = UF∩Q̃ = 0. Therefore ξ ∈R(UF ).

Conversely, assume that σ ∈ F ∩ R(UF ) and let Q be a Tq -open neighborhood as in Theorem 1.2. Let D be a

q-open neighborhood of σ such that D̃
q⊂ Q. Then [u]D is moderate and consequently D ⊂ R(u). In turn this implies

that C2/q,q ′(F ∩ D) = 0 and consequentlyF is C2/q,q ′ -thin at ξ . �
Lemma 2.4. Let u ∈ U(Ω) and let ν := tru. Put

S0(u) := {
ξ ∈ ∂Ω: ν

(
Q \ S(u)

) = ∞ ∀Q: ξ ∈ Q, Q Tq -open
}
. (14)

Then S(u) = S0(u) ∪ bq(S(u)).

The fact that S(u) ⊃ S0(u) ∪ bq(S(u)) is straightforward. The opposite inclusion depends on the fact that if ξ ∈
∂Ω \ bq(S(u)), there exists a Tq -open neighborhood Q such that C2/q,q ′(Q̃ ∩S(u)) = 0. Hence [u]Q = [u]Q\S(u). If
ξ ∈ S(u) then (8) holds. Therefore, using (10), it is easy to show that ν(Q \ S(u)) = ∞.

Lemma 2.5. Let u ∈ U(Ω) be a σ -moderate solution and {un} an increasing sequence of moderate solutions such
that un ↑ u. If w is a moderate solution dominated by u then trw � lim trun.

Put τ := trw and μ0 := lim trun. It is sufficient to show that τ(K) � μ0(K) for every compact set K ⊂ ∂Ω such
that μ0(K) < ∞ and C2/q,q ′(K) > 0. It can be shown that, under these assumptions: (a) There exists a Tq -open set
Q such that C2/q,q ′(K \ Q) = 0 and μ0(Q) < ∞. (b) If F is a Tq -closed subset of Q then ν(F ) � μ0(Q).

These facts imply in a straightforward manner that τ(K) � μ0(K).
Combining Lemma 2.3, Lemma 2.4 and Theorem 1.2(ii) one can verify that the existence of a solution u ∈ U(Ω)

such that ν = tru implies that ν is q-perfect.
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On the other hand, we observe that the solution U defined by (11) is σ -moderate. This is based on the fact that
UF is σ -moderate, which (for F compact) was established by the authors in [12] and it remains valid when F is
Tq -closed. Using this fact and Lemma 2.5 it can be shown that, if ν is q-perfect then trU = ν.

On the proof of Theorem 1.4. The uniqueness result is based on:

Lemma 2.6. Let u ∈ U(Ω) be a σ -moderate solution and {un} an increasing sequence of moderate solutions such
that un ↑ u. Put ν0 = lim trun and let ν be the Tq -regularization of ν0. Then ν is the precise boundary trace of u. In
particular it is independent of the choice of the sequence {un}.

Let {un} and {wn} be two increasing sequences of moderate solutions converging to u. Then Lemma 2.5 implies
that lim trun = lim trwn. Thus ν is independent of the choice of the sequence and it is not difficult to verify that
tru = ν.

Clearly, Lemma 2.6 implies that, if u,v are σ -moderate solutions and u � v then tru � trv. Hence the uniqueness
result. In addition, if u ∈ U(Ω) and ν = tru then the solution v defined as in Theorem 1.3 is uniquely determined by
ν and therefore by u. It can be sown that u � v ( = smallest solution dominating u − v) vanishes on R(u). Therefore
u � v � UF where F = S(u). Hence U = v ⊕ UF is the maximal solution with trace ν.

Acknowledgements

Both authors were partially sponsored by an EC grant through the RTN ‘Program Front–Singularities’, HPRN-CT-
2002-00274 and by the French–Israeli cooperation program through grant No. 3-1352. The first author (MM) also
wishes to acknowledge the support of the Israeli Science Foundation through grant No. 145-05.

References

[1] D.R. Adams, L.I. Hedberg, Function Spaces and Potential Theory, Grundlehren Math. Wiss., vol. 314, Springer, 1996.
[2] E.B. Dynkin, Diffusions, Superdiffusions and Partial Differential Equations, Colloquium Publications, vol. 50, Amer. Math. Soc., Providence,

RI, 2002.
[3] E.B. Dynkin, Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations, Colloquium Publications, vol. 34, Amer.

Math. Soc., Providence, RI, 2004.
[4] E.B. Dynkin, S.E. Kuznetsov, Superdiffusions and removable singularities for quasilinear partial differential equations, Comm. Pure Appl.

Math. 49 (1996) 125–176.
[5] E.B. Dynkin, S.E. Kuznetsov, Fine topology and fine trace on the boundary associated with a class of quasilinear differential equations, Comm.

Pure Appl. Math. 51 (1998) 897–936.
[6] S.E. Kuznetsov, σ -moderate solutions of Lu = uα and fine trace on the boundary, C. R. Acad. Sci. Paris, Ser. I 326 (1998) 1189–1194.
[7] J.F. Legall, The Brownian snake and solutions of �u = u2 in a domain, Probab. Theory Related Fields 102 (1995) 393–432.
[8] J.F. Legall, Spatial Branching Processes, Random Snakes and Partial Differential Equations, Birkhäuser, Basel, 1999.
[9] M. Marcus, L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the subcritical case, Arch. Rat. Mech. Anal. 144

(1998) 201–231.
[10] M. Marcus, L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: the supercritical case, J. Math. Pures Appl. 77

(1998) 481–524.
[11] M. Marcus, L. Véron, Removable singularities and boundary trace, J. Math. Pures Appl. 80 (2000) 879–900.
[12] M. Marcus, L. Véron, Capacitary estimates of positive solutions of semilinear elliptic equations with absorption, J. Eur. Math. Soc. 6 (2004)

483–527.
[13] B. Mselati, Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation, Mem. Amer. Math.

Soc. 168 (2004).


