Differential Topology
Self-coincidence of mappings between spheres and the Strong Kervaire Invariant One Problem
Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 511-513.

Let $f\phantom{\phantom{\rule{0.2em}{0ex}}}:{S}^{4n-2}\to {S}^{2n}$ be a map between spheres of dimensions $4n-2$ and $2n$ with $n>4$. We show that the existence of such a map satisfying the property that the pair $\left(f,f\right)\phantom{\phantom{\rule{0.2em}{0ex}}}:{S}^{4n-2}\to {S}^{2n}$ can be deformed to a coincidence free pair but cannot be deformed to coincidence free by small deformation is equivalent to the Strong Kervaire Invariant One Problem, i.e., the existence of an element of order 2 with Kervaire invariant one in the stable homotopy group ${\pi }_{2n-2}^{s}$.

Soit $f\phantom{\phantom{\rule{0.2em}{0ex}}}:{S}^{4n-2}\to {S}^{2n}$ une application continue entre les sphères de dimensions respectives $4n-2$ et $2n$ pour $n>4$. Nous démontrons que, si la paire $\left(f,f\right)$ est déformable en une paire libre de coïncidences, alors elle n'est pas déformable par petites déformations si et seulement si $n={2}^{j}$, $j⩾3$, et l'invariant de Kervaire de la classe d'homotopie $\left[f\right]\in {\pi }_{4n-2}\left({S}^{2n}\right)$ est 1. Cette dernière condition est équivalente à une forme forte du problème de Kervaire.

Accepted:
Published online:
DOI: 10.1016/j.crma.2006.01.016
Gonçalves, Daciberg 1; Randall, Duane 2

1 Departamento de Matemática, IME, USP, Caixa Postal 66.281, CEP, 05311-970, São Paulo, SP, Brazil
2 Department of Mathematics and Computer Science, Loyola University, 6363 St. Charles Avenue, New Orleans, LA 70118, USA
@article{CRMATH_2006__342_7_511_0,
author = {Gon\c{c}alves, Daciberg and Randall, Duane},
title = {Self-coincidence of mappings between spheres and the {Strong} {Kervaire} {Invariant} {One} {Problem}},
journal = {Comptes Rendus. Math\'ematique},
pages = {511--513},
publisher = {Elsevier},
volume = {342},
number = {7},
year = {2006},
doi = {10.1016/j.crma.2006.01.016},
language = {en},
url = {http://www.numdam.org/articles/10.1016/j.crma.2006.01.016/}
}
TY  - JOUR
AU  - Gonçalves, Daciberg
AU  - Randall, Duane
TI  - Self-coincidence of mappings between spheres and the Strong Kervaire Invariant One Problem
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 511
EP  - 513
VL  - 342
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2006.01.016/
DO  - 10.1016/j.crma.2006.01.016
LA  - en
ID  - CRMATH_2006__342_7_511_0
ER  - 
%0 Journal Article
%A Gonçalves, Daciberg
%A Randall, Duane
%T Self-coincidence of mappings between spheres and the Strong Kervaire Invariant One Problem
%J Comptes Rendus. Mathématique
%D 2006
%P 511-513
%V 342
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2006.01.016/
%R 10.1016/j.crma.2006.01.016
%G en
%F CRMATH_2006__342_7_511_0
Gonçalves, Daciberg; Randall, Duane. Self-coincidence of mappings between spheres and the Strong Kervaire Invariant One Problem. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 511-513. doi : 10.1016/j.crma.2006.01.016. http://www.numdam.org/articles/10.1016/j.crma.2006.01.016/

[1] Barratt, M.; Jones, J.; Mahowald, M. The Kervaire invariant problem, Contemp. Math., Volume 19 (1983), pp. 9-22

[2] Barratt, M.; Jones, J.; Mahowald, M. The Kervaire invariant and the Hopf invariant, Lecture Notes in Math., vol. 1286, Springer-Verlag, 1987, pp. 135-173

[3] Browder, W.E. The Kervaire invariant of framed manifolds and its generalizations, Ann. of Math., Volume 90 (1969), pp. 157-186

[4] Cohen, F.R. Fibration and product decompositions in nonstable homotopy theory, Handbook of Algebraic Topology, North-Holland, 1995, pp. 1175-1208

[5] Dold, A.; Gonçalves, D.L. Self-coincidence of fibre maps, Osaka J. Math., Volume 42 (2005), pp. 291-307

[6] Gonçalves, D.L. Coincidence theory (Brown, R.F.; Furi, M.; Górniewicz, L.; Jiang, B., eds.), Handbook of Topological Fixed Point Theory, Springer, 2005, pp. 1-42

[7] D. Gonçalves, D. Randall, Self-coincidence of maps from $Sq$-bundles over $Sn$ to $Sn$, Bol. Soc. Mexicana Mat. 10 (3) (2004) 181–192 (special issue)

[8] D. Gonçalves, D. Randall, Self-coincidence of maps between spheres, in preparation

[9] Koschorke, U. Selfcoincidences in higher codimensions, J. Reine Angew. Math., Volume 576 (2004), pp. 1-10

[10] Snaith, V.; Tornehave, J. On $π∗s(BO)$ and the Arf invariant of framed manifolds, Contemp. Math., Volume 12 (1982), pp. 299-314

[11] Toda, H. Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Stud., vol. 49, Princeton Univ. Press, Princeton, 1962

Cited by Sources: