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Abstract

Let f :S4n−2 → S2n be a map between spheres of dimensions 4n − 2 and 2n with n > 4. We show that the existence of such a
map satisfying the property that the pair (f,f ) :S4n−2 → S2n can be deformed to a coincidence free pair but cannot be deformed
to coincidence free by small deformation is equivalent to the Strong Kervaire Invariant One Problem, i.e., the existence of an
element of order 2 with Kervaire invariant one in the stable homotopy group πs

2n−2. To cite this article: D. Gonçalves, D. Randall,
C. R. Acad. Sci. Paris, Ser. I 342 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Les auto-coincidences d’applications entre deux sphères et la forme forte du problème de Kervaire. Soit f :S4n−2 → S2n

une application continue entre les sphères de dimensions respectives 4n − 2 et 2n pour n > 4. Nous démontrons que, si la paire
(f,f ) est déformable en une paire libre de coïncidences, alors elle n’est pas déformable par petites déformations si et seulement si
n = 2j , j � 3, et l’invariant de Kervaire de la classe d’homotopie [f ] ∈ π4n−2(S2n) est 1. Cette dernière condition est équivalente
à une forme forte du problème de Kervaire. Pour citer cet article : D. Gonçalves, D. Randall, C. R. Acad. Sci. Paris, Ser. I 342
(2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

The study of self-coincidences of mappings between spheres in [5] and [7] investigated the relation between ho-
motopy disjointness and homotopy disjointness by small deformation for a map f :Sm → S2n. The pair (f,f ) is
homotopy disjoint from [5] if there exists a map g :Sm → S2n homotopic to f such that f and g are coincidence
free; i.e., f (x) �= g(x) for all x ∈ Sm. The definition of homotopy disjoint by small deformation was introduced
in [5]. An equivalent formulation in §7.2 of [6] affirms that (f,f ) is homotopy disjoint by small deformation if,
given ε > 0, there is an ε-homotopy ht :Sm → S2n from f = h0 to g = h1 such that f and g are coincidence free
with |ht (x) − f (x)| < ε for all x ∈ Sm and 0 � t � 1. If (f,f ) is homotopy disjoint by small deformation, then by
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definition (f,f ) is homotopy disjoint. Moreover, the converse was proved for m < 4n − 2 by Lemma 1.14 of [5]
or Theorem 2.2 of [9]. We use the notation of [11] for the homotopy of spheres. Any mapping f :S30 → S16 repre-
senting σ 2

16 has the property that (f,f ) is homotopy disjoint, but cannot be homotopy disjoint by small deformation,
according to Proposition 4.13 of [7]. Classically, σ 2

16 is a Kervaire invariant one element of order 2.
For any mapping f :S4n−2 → S2n with n > 1, the Kervaire invariant of [f ], KI([f ]), is the element of Z/2

obtained in the following manner. Via the adjoint construction, f produces a mapping

f̂ :S2n−2 → Ω2nS2n → Ω∞S∞ = F. (1)

Let PL → F
c−→F/PL denote the fibration associated to stable PL bundles and stable spherical fibrations. The clas-

sical Kervaire invariant morphism KI :πs
2n−2 → Z/2, defined in terms of the Arf invariant of framed manifolds, can

be identified with the morphism

c∗ :π2n−2(F ) → π2n−2(F/PL) (2)

for all even n � 2, according to [3] and Section 2 of [10]. Now c∗ is the trivial morphism for all odd n > 1, since
π2n−2(F/PL) ≈ Z while π2n−2(F ) is finite. By definition, KI([f ]) = [c ◦ f̂ ] = c∗([f̂ ]) for any mapping f :S4n−2 →
S2n with n � 2. If KI([f ]) = 1, necessarily n = 2j for j � 1 by Theorem 7.1 of [3].

The Strong Kervaire Invariant One Problem conjectures the existence of mappings f : S2j+1−2 → S2j
for j � 4

such that KI([f ]) = 1 and 2[f ] = 0. Theorem 2.1 affirms that mappings f :S4n−2 → S2n for which (f,f ) is homo-
topy disjoint, but cannot be homotopy disjoint by small deformation, are precisely the solutions to the Strong Kervaire
Invariant One Problem. Theorem 9.1 of [4] presents five formulations equivalent to the Strong Kervaire Invariant
One Problem. Perhaps the best known formulation equivalent to the existence of a class θ ∈ πs

2j −2
of order 2 with

KI(θ) = 1 for j > 1 is the divisibility of the Whitehead square [ι2j −1, ι2j −1] by 2, established in Corollary 3.2 of [1].
See [2] also.

The survey of coincidence theory in [6] provides more background material on self-coincidences of mappings. The
material in this note was investigated further in [8].

2. Main result

This Note provides the following equivalent formulation:

Theorem 2.1. Let f :S4n−2 → S2n with n > 4 be any mapping such that (f,f ) is homotopy disjoint. Then (f,f )

cannot be homotopy disjoint by small deformation if and only if the class [f ] has Kervaire invariant one.

The statements in the abstract follow from Theorem 2.1 in the following manner. Proposition 2.10 of [5] affirms
that (f,f ) is homotopy disjoint if and only if A ◦ f is homotopic to f :S4n−2 → S2n with n > 4, where A denotes
the antipodal map on S2n. In other words, (f,f ) is homotopy disjoint if and only if 2[f ] = 0 in π4n−2(S

2n) ≡
πs

2n−2. Given any f :S4n−2 → S2n with n > 4 such that (f,f ) is homotopy disjoint, but not homotopy disjoint by
small deformation, then KI([f ]) = 1 by Theorem 2.1. Necessarily, 2n = 2j for some j > 3 by Theorem 7.1 of [3].
Thus f :S2j+1−2 → S2j

produces a solution [f ] to the Strong Kervaire Invariant One Problem. Conversely, any
representative g :S2j+1−2 → S2j

with j � 4 of a solution θ ∈ πs
2j −2

to the Strong Kervaire Invariant One Problem must
have (g, g) homotopy disjoint since 2[g] = 0. Moreover, (g, g) cannot be homotopy disjoint by small deformation by
Theorem 2.1, since KI([g]) = 1.

Example 1. There exist maps f :S2j+1−2 → S2j
for 4 � j � 6 such that (f,f ) is homotopy disjoint, but not by small

deformation, since the stable homotopy groups πs
14

∼= Z/2 ⊕Z/2, πs
30

∼= Z/2 ⊕Z/3 and πs
62

∼= (Z/2)2 ⊕Z/4 ⊕Z/3
contain Kervaire invariant one classes of order 2.

Example 2. Theorem 2.1 clearly requires that n > 4. Any representative f :S6 → S4 for η2
4 and any representative

g :S14 → S8 for ν2
8 possess the property that both(f,f ) and (g, g) are homotopy disjoint by small deformation, yet

they represent Kervaire invariant one elements of order 2. This observation follows from the triviality of Whitehead
products in H -spaces and the proof of Theorem 2.1.
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3. Proof of Theorem 2.1

The classical EHP sequence follows from the homotopy exact sequence for the fibration S2n−1 → ΩS2n →
ΩS4n−1. This produces a short exact sequence

0 → Z/2 → π4n−3
(
S2n−1) Σ−→π4n−2

(
S2n

) → 0 (3)

with the image of Z/2 being the subgroup generated by the Whitehead square [ι2n−1, ι2n−1] for n > 4. Consequently,
the sequence is split exact if and only if [ι2n−1, ι2n−1] is not divisible by 2.

Propositions 2.13 and 2.16 of [5] affirm that (f,f ) is homotopy disjoint by small deformation if and only if
f :S4n−2 → S2n admits a lifting to the Stiefel manifold V2n+1,2 of orthonormal 2-frames in R

2n+1. Equivalently,
∂([f ]) = 0 where ∂ is the boundary operator in the homotopy exact sequence for the tangent sphere bundle fibration
S2n−1 → V2n+1,2 → S2n. Given f :S4n−2 → S2n such that (f,f ) is homotopy disjoint with n > 4, then 2[f ] = 0.
Since ∂(ι2n) = 2ι2n−1, ∂([f ]) = [(2ι2n−1) ◦ g] = 2[g] = 0 whenever sequence [3] splits, with [f ] = Σ[g]. Conse-
quently, f lifts to V2n+1,2 and so (f,f ) is homotopy disjoint by small deformation.

Now the sequence (3) does not split precisely when 2n = 2j for some j > 3 and there exists a class θ of order 2
and Kervaire invariant one in π2j+1−2(S

2j
). For any such class θ , every desuspension α ∈ π2j+1−3(S

2j −1) of θ has the

property that 2α = [ι2j −1, ι2j −1]. For any representative f :S2j+1−2 → S2j
of any such class θ , (f,f ) is homotopy

disjoint since 2[f ] = 0. But (f,f ) cannot be homotopy disjoint by small deformation, since ∂(θ) = 2α �= 0.
Conversely, if f :S2j+1−2 → S2j

for j > 3 represents an element [f ] of order 2 such that (f,f ) cannot be homo-
topy disjoint by small deformation, then necessarily ∂([f ]) = 2α �= 0 where [f ] = Σα. Consequently, α must have
order 4 so 2α = [ι2j −1, ι2j −1]. Moreover, [f ] has Kervaire invariant one by [3] and by the well-known fact in [1]

that the stable secondary operation Φj−1,j−1, based on the relation Sq2j−1
Sq2j−1 + ∑j−2

i=0 Sq2j −2i
Sq2i = 0, detects

a class [f ] ∈ π2j+1−2(S
2j

) with 2[f ] = 0 if and only if [ι2j −1, ι2j −1] = 2α where Σα = [f ].
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