Analyse numérique/Problèmes mathématiques de la mécanique
Inégalités d'entropie pour un schéma de relaxation
[Entropy inequalities for a relaxation scheme]
Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 63-68.

This work is devoted to the discrete entropy inequalities when considering relaxation schemes. After describing the numerical method, we propose a direct proof to establish the discrete entropy inequalities. In fact, we show that the considered relaxation model satisfies a minimum principle on the entropy. This principle implies the expected inequalities. The work is concluded when applying the above results to the 10 moment model.

Nous nous intéressons aux inégalités discrètes d'entropie pour une classe de schémas de relaxation. Après une brève description de la méthode, nous proposons une démonstration directe pour établir les inégalités discrètes d'entropie. Ces inégalités sont, en fait, la conséquence d'un principe de minimisation de l'entropie satisfait par le modèle de relaxation considéré. Ces résultats sont ensuite étendus au modèle aux 10 moments.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2004.10.008
Berthon, Christophe 1, 2

1 MAB, UMR-CNRS 5466, LRC-CEA M03, université Bordeaux I, 351, cours de la libération, 33400 Talence, France
2 INRIA futurs, domaine de Voluceau-Rocquencourt, BP 105, 78153 Le Chesnay cedex, France
@article{CRMATH_2005__340_1_63_0,
     author = {Berthon, Christophe},
     title = {In\'egalit\'es d'entropie pour un sch\'ema de relaxation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {63--68},
     publisher = {Elsevier},
     volume = {340},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crma.2004.10.008},
     language = {fr},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2004.10.008/}
}
TY  - JOUR
AU  - Berthon, Christophe
TI  - Inégalités d'entropie pour un schéma de relaxation
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 63
EP  - 68
VL  - 340
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2004.10.008/
DO  - 10.1016/j.crma.2004.10.008
LA  - fr
ID  - CRMATH_2005__340_1_63_0
ER  - 
%0 Journal Article
%A Berthon, Christophe
%T Inégalités d'entropie pour un schéma de relaxation
%J Comptes Rendus. Mathématique
%D 2005
%P 63-68
%V 340
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2004.10.008/
%R 10.1016/j.crma.2004.10.008
%G fr
%F CRMATH_2005__340_1_63_0
Berthon, Christophe. Inégalités d'entropie pour un schéma de relaxation. Comptes Rendus. Mathématique, Volume 340 (2005) no. 1, pp. 63-68. doi : 10.1016/j.crma.2004.10.008. http://www.numdam.org/articles/10.1016/j.crma.2004.10.008/

[1] M. Baudin, C. Berthon, F. Coquel, R. Masson, Q.H. Tran, Relaxation method for a two-phase flow model with hydrodynamic closure law, Numer. Math. (2004), accepté

[2] C. Berthon, Numerical approximation of the 10 moment Gaussian closure, soumis

[3] Bouchut, F. Entropy satisfying flux vector splittings and kinetic BGK models, Numer. Math., Volume 94 (2003), pp. 623-672

[4] C. Chalons, F. Coquel, Navier–Stokes equations with several independent pressure laws and explicit predictor–corector scheme, 2003, preprint

[5] Chen, G.Q.; Levermore, C.D.; Liu, T.P. Hyperbolic conservation laws with stiff relaxation terms and entropy, Commun. Pure Appl. Math., Volume 47 (1995), pp. 787-830

[6] Coquel, F.; Perthame, B. Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM J. Numer. Anal., Volume 35 (1998) no. 6, pp. 2223-2249

[7] Dubroca, B.; Tchong, M.; Charrier, P.; Tikhonchuk, V.T.; Morreeuw, J.-P. Magnetic field generation in plasma due to anisotropic laser heating, Phys. Plasma, Volume 11 (2004), pp. 3830-3839

[8] Jin, S.; Xin, Z. The relaxation scheme for systems of conservation laws in arbitrary space dimension, Commun. Pure Appl. Math., Volume 45 (1995), pp. 235-276

[9] Levermore, C.D.; Morokoff, W.J. The Gaussian moment closure for gas dynamics, SIAM J. Appl. Math., Volume 59 (1999), pp. 72-96

[10] Liu, T.P. Hyperbolic conservation laws with relaxation, Commun. Math. Phys., Volume 108 (1987), pp. 153-175

[11] Suliciu, I. On the thermodynamics of fluids with relaxation and phase transitions, I – Fluids with relaxation, Int. J. Engrg. Sci., Volume 36 (1998), pp. 921-947

[12] Tadmor, E. A minimum entropy principle in the gas dynamics equations, Appl. Numer. Math., Volume 2 (1986), pp. 211-219

[13] Whitham, J. Linear and Nonlinear Waves, Wiley, New York, 1974

Cited by Sources: