Alinhac, S.; Lerner, N.
Unicité forte à partir d'une variété de dimension quelconque pour des inégalités différentielles elliptiques
Séminaire Équations aux dérivées partielles (Polytechnique), Tome (1979-1980) , Exposé no. 20 , p. 1-9
Zbl 0439.35024
URL stable : http://www.numdam.org/item?id=SEDP_1979-1980____A21_0

Bibliographie

[1] S. Alinhac Non unicité pour des opérateurs à caractéristiques complexes simples, à paraître Annales de l'ENS. Numdam | Zbl 0456.35002

[2] S. Alinhac, M.S. Baouendi Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities, Amer. J.Math. 102, 1, (1980), 179-217. MR 556891 | Zbl 0425.35098

[3] N. Aronszajn A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235-249. MR 92067 | Zbl 0084.30402

[4] M.S. Baouendi, F. Treves, E.C. Zachmanoglou Flat solutions and singular solutions of homogeneous linear partial differential equations with analytic coefficients, à paraître. Zbl 0418.35003

[5] M.S. Baouendi, E.C. Zachmanoglou Unique continuation of solutions of partial differential equations and inequalities from manifods of any dimension, Duke Math. Journal 45 (1978), 1-13. MR 486484 | Zbl 0373.35001

[6] A.P. Calderon Existence and uniqueness theorem for systems of partial differential equations, Proc. Symp. Fluid Dynamics and Appl. Math. (Un. of Maryland 1961), Gordon and Breach, New York, (1962) 147-195. MR 156078 | Zbl 0147.08202

[7] H. Cordes Uber die Besotimmtheit der Lôsungen elliptischer differentialgleichungen durch Anfangsvorgaben, Nachr. Akad. Wiss. Gôttingen IIa (1956), 230-258. Zbl 0074.08002

[8] L. Hôrmander Non-uniqueness for the Cauchy problem. Colloque International, Université de Nice (1974). Lecture Notes in Mathematics, Fourier Integral Operators and Partial Differential Equations Springer-Verlag 459. MR 419980 | Zbl 0315.35019

[9] Whitney Analytic extensions of differentiable functions defined in closed sets. Trans. of the Amer. Math. Society, (36) (1934), 63-89. MR 1501735 | Zbl 0008.24902