Bifurcations élémentaires et transition
Séminaire Équations aux dérivées partielles (Polytechnique) (1979-1980), Talk no. 21, 24 p.
@article{SEDP_1979-1980____A22_0,
     author = {Iooss, G\'erard},
     title = {Bifurcations \'el\'ementaires et transition},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1979-1980},
     note = {talk:21},
     zbl = {0437.58014},
     mrnumber = {600706},
     language = {fr},
     url = {http://www.numdam.org/item/SEDP_1979-1980____A22_0}
}
Iooss, G. Bifurcations élémentaires et transition. Séminaire Équations aux dérivées partielles (Polytechnique) (1979-1980), Talk no. 21, 24 p. http://www.numdam.org/item/SEDP_1979-1980____A22_0/

[1] V.I. Arnold: Loss of stability of self-oscollations close to resonance and versal deformations of equivariant vector fields. Funk. Anal. Ego. Priloz. 11, 2, 1-10 (1977). | MR 442987 | Zbl 0411.58013

[2] P. Bergé et Y. Pomeau: La turbulence. La Recherche 110, 422-432 (1980).

[3] A. Chenciner et G. Iooss: Bifurcations de tores invariants. Arch. Rat. Mech. Anal. 69, 2, 109-198 (1979). | MR 521266 | Zbl 0405.58033

[4] A. Chenciner et G. Iooss: Persistance et bifurcation de tores invariants. Arch. Rat. Mech. Anal. 71, 4, 301-306 (1979). | MR 533284 | Zbl 0417.35013

[5] J.P. Gollub and S.V. Benson: Phase locking in the oscillations leading to turbulence. Pattern formation, H. Haken ed. Springer 1979.

[6] J.P. Gollub and S.V. Benson: Time dependent instabilities and the transition to turbulent convection. A paraître dans J. Fluid Mech.

[7] M. Gorman, L. Reith, H.L. Swinney: Transition to turbulence in the flow between concentric rotating cylinder. Proc. New York Acad. Sciences, Dec. 79 (à paraître) .

[8] G. Iooss: Bifurcation et stabilité, Pub. Math. d'Orsay n° 31, 1974. | MR 487634

[9] G. Iooss: Sur la deuxième bifurcation d'une solution stationnaire de systèmes du type Navier-Stokes. Arch. Rat. Mech. Anal. 64,4, 339-369 (1977). | MR 650472 | Zbl 0356.35068

[10] G. Iooss and D.D. Joseph: Bifurcation and stability of nT-periodic solutions branching from T-periodic solutions at points of resonance. Arch. Rat. Mech. Anal. 66, 2, 135-172 (1977). | MR 501154 | Zbl 0448.34044

[11] G. Iooss and D.D. Joseph: The behavior of solutions lying on an invariant 2-torus arising from the bifurcation of a periodic solution. Bifurcation theory, Bielefeld, Oct. 79, Pitman research notes (à paraître). | MR 659692 | Zbl 0512.58026

[12] G. Iooss and W.F. Langford: On the interactions of two Hopf bifurcations (en préparation).

[13] R. Jost and E. Zehnder: A generalization of the Hopf bifurcation theorem. Helvetica Physica Acta, 45, 258-276 (1972).

[14] W.F. Langford and G. Iooss: Interactions of Hopf and pitchfork bifurcations. Workshop on bifurcation problems. Mittelmann Ed. Birkhäuser-Lecture Notes 1980 (à paraître).. | MR 591900 | Zbl 0437.34036

[15] A. Libchaber et J. Maurer: Une expérience de Rayleigh-Bénard de géométrie réduite; multiplication, accrochage et démultiplication de fréquences. J. de Physique, C 3, suppl. n°4, 41, 51-56 (1980).

[16] J. Maurer and A. Libchaber: Rayleigh-Bénard experiment in liquid hélium; frequency locking and the onset of turbulence. J. de Physique Lettres, 40, L 419-423 (1979).

[17] Yu I. Neimark: On some cases of periodic motions depending on parameters. Dokl. Akad. Nauk. SSR, 129, 736-739 (1959). | MR 132256 | Zbl 0089.29603

[18] Y. Pomeau et P. Manneville: Intermittency and the Lorenz model. Physics letters, 75A, 1-2 (1979). | MR 594556

[19] D. Ruelle and F. Takens: On the nature of turbulence. Comm. Math. Phys. 20, 167-192 (1971). | MR 284067 | Zbl 0223.76041

[20] R.J. Sacker: On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations. New York Univ. IMM-NYU, 333 (1964).

[21] D.G. Schaeffer: Qualitative analysis of a model for boundary effects in the Taylor problem. Preprint. | MR 553586 | Zbl 0461.76016

[22] Y.H. Wan: Bifurcation into invariant tori at points of resonance. Arch. Rat. Mech. Anal. 68, 343-357 (1978). | MR 511162 | Zbl 0399.58005