On the singular spectrum of discrete Schrödinger operator
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1993-1994), Talk no. 12, 9 p.
@article{SEDP_1993-1994____A13_0,
     author = {Naboko, S.},
     title = {On the singular spectrum of discrete {Schr\"odinger} operator},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:12},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1993-1994},
     zbl = {0886.34073},
     mrnumber = {1300908},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1993-1994____A13_0/}
}
TY  - JOUR
AU  - Naboko, S.
TI  - On the singular spectrum of discrete Schrödinger operator
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:12
PY  - 1993-1994
DA  - 1993-1994///
PB  - Ecole Polytechnique, Centre de Mathématiques
UR  - http://www.numdam.org/item/SEDP_1993-1994____A13_0/
UR  - https://zbmath.org/?q=an%3A0886.34073
UR  - https://www.ams.org/mathscinet-getitem?mr=1300908
LA  - en
ID  - SEDP_1993-1994____A13_0
ER  - 
%0 Journal Article
%A Naboko, S.
%T On the singular spectrum of discrete Schrödinger operator
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:12
%D 1993-1994
%I Ecole Polytechnique, Centre de Mathématiques
%G en
%F SEDP_1993-1994____A13_0
Naboko, S. On the singular spectrum of discrete Schrödinger operator. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1993-1994), Talk no. 12, 9 p. http://www.numdam.org/item/SEDP_1993-1994____A13_0/

[1] T. Kato - Perturbation theory for linear operator Springer-Verlag (1906). | Zbl

[2] K.O. Friedrichs - Perturbation of spectra of operators in Hilbert space Amer. Math. Soc. (1965). | MR

[3] K. Chadan and P.C. Sabatier - Inverse problems in quantum scattering theory Springer-Verlag (1977). | MR | Zbl

[4] R. Edwards - Fourier series, a modern introduction Springer-Verlag (1979). | Zbl

[5] B. Simon - Some Jacobi matrices with decaying potential and dense point spectrum Comm. in Math. Phys. 87 (1982), 253-258. | MR | Zbl

[6] D.B. Pearson - Singular continous measures in scattering theory Comm. in Math Phys. 60 (1978), 13-36. | MR | Zbl

[7] B. Simon and T. Spencer - Trace class perturbations and the absence of absolutely continuous spectra Comm. in Math. Phys. 125 (1989), 113-126. | MR | Zbl

[8] M. Reed and B. Simon - Methods of modern mathematical physics 4 (Analysis of operators) Acad. Press (1977). | MR | Zbl

[9] S. Albeverio - On bound states in the continum of N-body system and the virial theorem Ann. Phys. 71 (1972), 167-276. | MR

[10] S.N. Naboko - Uniqueness theorems for operator-valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model Arkiv for Matem. 23:1 (1987), 115-140. | MR | Zbl

[11] S.N. Naboko and S.I. Yakovlev - Discrete Schrödinger operator, point spectrum on a continuous one Algebra and Analysis 4:3 (1992), 183-195 (in Russian). | MR | Zbl

[12] I.C. Gohberg and M.G. Krein - Introduction to the theory of linear nonselfadjoint operators in Hilbert space Amer. Math. Soc. Providence R. I. (1969). | MR | Zbl

[13] B.S. Pavlov and S.V. Petras - On the singular spectrum of weakly perturbed operator of multiplication, Funk. Anal. i Priloz 4:2 (1970), 54-61 (in Russian) ; English. transl. in Functional Anal. Appl. 4 (1970). | MR | Zbl

[14] L.D. Faddeev - On Friedrichs model in continuous spectrum perturbation theory Trudy Math. Inst. Acad. of Sci. USSR 73 (1964) 292-313 (in Russian) ; English transl. in Amer. Math. Soc. Transl. 62 (1967). | MR | Zbl

[15] L.D. Faddeev and B.S. Pavlov - Zero sets of operator-functions with positive imaginary part Lecture Notes in Math. Springer-Verlag, 1043 (1984) 124-128.

[16] W.K. Heyman and P.B. Kennedy - Subharmonicfunctions 1, Acad. Press (1976).

[17] S.I. Yakovlev - Spectral analysis of selfadjoint operators in Friedrichs model S.-Petersburg Univ. Depart. Math. Phys. Thesis (1991).

[18] V. Lance - Nonselfadjoint difference operator, Dokl. Acad. Sci. USSR, 173:6 (1967), 1260-1263 (in Russian). | MR

[19] E.M. Dynkin, S.N. Naboko and S.I. Yakovlev - The boundary of finiteness of the singular spectrum in the selfadjoint Friedrichs model, Algebra and Analysis, 3:2 (1991) (in Russian) ; English transl. in St. Petersburg Math. J. 3:2 (1992) 299-311. | MR | Zbl