Integral equations via saddle point problem for 2D electromagnetic problems
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 5, p. 1023-1049
@article{M2AN_2000__34_5_1023_0,
     author = {Bartoli, Nathalie and Collino, Francis},
     title = {Integral equations via saddle point problem for 2D electromagnetic problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {34},
     number = {5},
     year = {2000},
     pages = {1023-1049},
     zbl = {0964.78005},
     mrnumber = {1837766},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_5_1023_0}
}
Bartoli, Nathalie; Collino, Francis. Integral equations via saddle point problem for 2D electromagnetic problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 5, pp. 1023-1049. http://www.numdam.org/item/M2AN_2000__34_5_1023_0/

[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions. Dover Publications, New-York (1972).

[2] N. Bartoli, Higher Order Effective Boundary Conditions for Perfectly Conducting Scatterers Coated by a thin Dielectric Layer. PhD thesis, INSA, Toulouse (to appear).

[3] N. Bartoli and A. Bendali, Higher order effective boundary conditions for perfectly conducting scatterers coated by a thin dielectric layer and their boundary element solution (to be submitted).

[4] A. Bendali, Boundary element solution of scattering problems relative to a gêneralized impedance boundary condition, in Partial differential equations, Theory and numerical solution, W. Jâger, J. Necas, O. John, K. Najzar and J, Stara, Eds. Chapman & Hall/CRC, 406 (1999) 10-24. | MR 1713870 | Zbl 0937.78015

[5] A. Bendali and L. Vernhet, Résolution par éléments finis de frontière d'un problème de diffraction d'onde comportant une condition aux limites d'impédance généralisée. C. R. Acad. Sci. Paris, 321 (1995) 791-797. | MR 1354727 | Zbl 0837.65130

[6] F. Brezzi and M. Fortin, in Mixed and Hybrid Finite Element Method, volume 15, Springer-Verlag (1991). | MR 1115205 | Zbl 0788.73002

[7] D. Calvetti, L. Reichel and Q. Zhang, Conjugate gradient algorithms for symmetrie inconsistent linear Systems, in Proceedings of the Cornélius Lanczos International Centenary Conference, J.D. Brown, M.T. Chu, D.C. Ellison and R.J. Plemmons, Eds. SIAM, Philadelphia (1994) 267-272. | MR 1298212

[8] G. Chen and J. Zhou, in Boundary element Methods. Academic Press, London (1992). | MR 1170348 | Zbl 0842.65071

[9] F. Collino and B. Després, Integral equations via saddle point problems for time-harmonie Maxwell's equations. SIAM J. Appl. Math, (submitted). | Zbl 1016.65110

[10] D. Colton and R. Kress, in Inverse Acoustic and Electromagnetic Scattering Theory, 93, Springer-Verlag (1992). | MR 1183732 | Zbl 0760.35053

[11] B. Després, Quadractic functional and integral equations for harmonie wave problems in exterior domains. RAIRO-Modél. Math. Anal. Numér. 31 (1997) 679-732. | Numdam | MR 1485752 | Zbl 0890.65131

[12] V. Frayssé, L. Giraud and S. Gratton, A set of GMRES routines for real and complex arithmetics. Technical report, Cerfacs TR/PA/97/49, Toulouse, France (1997).

[13] V. Girault and P.A. Raviart, in Finite Element methods for Navier-Stohes Equations, Theory and Algorithms, 5, Springer-Verlag (1986). | MR 851383 | Zbl 0585.65077

[14] G.H. Golub and C.F. Van Loan, in Matrix Commutations, 3rd edn., Chap. 9-10, The Johns Hopkins University Press, Baltimore (1996). | Zbl 0865.65009

[15] B. Perthame and L. Vega, Morrey-Campanato estimates for Helmholtz equations. J. Funct. Anal., 164 (1999) 340-355. | MR 1695559 | Zbl 0932.35048

[16] Y. Saad, in Iterative methods for sparse linear Systems. PWS publishing (1995). | Zbl 1031.65047