Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 5, p. 1051-1067
@article{M2AN_2000__34_5_1051_0,
     author = {Ming, Pingbing and Shi, Zhong-Ci},
     title = {Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {34},
     number = {5},
     year = {2000},
     pages = {1051-1067},
     zbl = {1072.76567},
     mrnumber = {1837767},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_5_1051_0}
}
Ming, Pingbing; Shi, Zhong-Ci. Dual combined finite element methods for non-newtonian flow (II). Parameter-dependent problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 5, pp. 1051-1067. http://www.numdam.org/item/M2AN_2000__34_5_1051_0/

[1] R.A. Adams, Sobolev Space. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030

[2] C. Amrouche and V. Girault, Propriétés fonctionnelles d'opérateurs. Application au problème de stokes en dimension qualconque. Publications du Laboratoire d'Analyse Numérique, No 90025, Université Piere et Marie Curie, Paris, France (1990).

[3] D.N. Arnold and F. Brezzi, Some new elements for the Reissner-Mindlin plate model, Boundary Value Problems for Partial Differential Equations, edited by C. Baiocchi and J.L. Lions Masson, Paris (1992) 287-292. | MR 1260452 | Zbl 0817.73058

[4] J. Baranger, K. Najib and D. Sandri, Numerical analysis of a three-field model for a Quasi-Newtonian flow. Comput. Methods Appl. Mech. Engrg. 109 (1993) 281-292. | MR 1245979 | Zbl 0844.76004

[5] J.W. Barrett and W.B. Liu, Quasi-norm error bounds for the finite element approximation of a Non-Newtonian flow. Numer. Math. 61 (1994) 437-456. | MR 1301740 | Zbl 0811.76036

[6] F. Brezzi and R.S. Falk, Stability of higher-order Hood-Taylor methods, SIAM J. Numer. Anal. 28 (1991) 581-590. | MR 1098408 | Zbl 0731.76042

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Methods. Springer-Verlags, New York (1991). | MR 1115205

[8] P.G. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[9] M.J. Crochet, A.R. Davis and K. Walters, Numerical Simulations of Non-Newtonian Flow. Elsevier, Amsterdam, Rheology Series 1 (1984). | MR 801545 | Zbl 0583.76002

[10] M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for solving the stationary stokes equations. RAIRO Anal. Numér. 3 (1973) 33-75. | Numdam | Zbl 0302.65087

[11] M. Fortin, Old and new finite elements for incompressible flows. Internat J. Numer. Methods Fluids 1 (1981) 347-364. | MR 633812 | Zbl 0467.76030

[12] M. Fortin, R. Guénette and R. Pierre, Numerical analysis of the modified EVSS method. Comput. Methods Appl. Mech. Engrg. 143 (1997) 79-95. | MR 1442390 | Zbl 0896.76040

[13] M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 73 (1989) 341-350. | MR 1016647 | Zbl 0692.76002

[14] V. Girault and R.A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin-New York (1986). | MR 851383 | Zbl 0585.65077

[15] P. Hood and C. Taylor, A numerical solution of the Navier-Stokes equation using the finite element technique. Comput. and Fluids 1 (1973) 73-100. | MR 339677 | Zbl 0328.76020

[16] A.F.D. Loula and J.W.C. Guerreiro, Finite element analysis of nonlinear creeping flows. Comput. Methods Appl. Mech. Engrg. 79 (1990) 89-109. | MR 1044205 | Zbl 0716.73091

[17] J. Malek and S.J. Nečas, Weak and Measure-valued Solution to Evolutionary Partial Differential Equations. Chapman & Hall (1996). | Zbl 0851.35002

[18] Pingbing Ming and Zhong-Ci Shi, Dual combined finite element methods for Non-Newtonian flow (I) Nonlinear Stabilized Methods (1998 Preprint).

[19] Pingbing Ming and Zhong-Ci Shi, A technique for the analysis of B-B inequality for non-Newtonian flow (1998 Preprint). | MR 1807105

[20] D. Sandri, Analyse d'une formulation à trois champs du problème de Stokes. RAIRO Modél. Math. Math. Anal. Numér. 27 (1993) 817-841. | Numdam | MR 1249454 | Zbl 0791.76008

[21] D. Sandri, Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscoélastiques suit la Loi Puissance ou le modèle de Carreau. RAIRO-Modèl. Math. Anal. Numér. 27 (1993) 131-155. | Numdam | MR 1211613 | Zbl 0764.76039

[22] D. Sandri, A posteriori estimators for mixed finite element approximation of a fluid obeying the power law. Comput. Meths Appl. Mech. Engrg. 166 (1998) 329-340. | MR 1659179 | Zbl 0953.76057

[23] C. Schwab and M. Suri, Mixed h - p finite element methods for Stokes and non-Newtonian Flow. Research report No 97-19, Seminar für Angewandte Mathematik, ETH Zürich (1997). | Zbl 0924.76052

[24] B. Szabó and I. Babuška, Finite Element Analysis. John & Sons, Inc. (1991). | MR 1164869 | Zbl 0792.73003

[25] Tianxiao Zhou, Stabilized finite element methods for a model parameter-dependent problem, in Proc of the Second Conference on Numerical Methods for P.D.E., edited by Longan Ying and Benyu Guo World Scientific, Singapore (1991) 192-194. | MR 1160831