Fluids with anisotropic viscosity
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 2, p. 315-335
@article{M2AN_2000__34_2_315_0,
     author = {Chemin, Jean-Yves and Desjardins, Beno\^\i t and Gallagher, Isabelle and Grenier, Emmanuel},
     title = {Fluids with anisotropic viscosity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {34},
     number = {2},
     year = {2000},
     pages = {315-335},
     zbl = {0954.76012},
     mrnumber = {1765662},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_2_315_0}
}
Chemin, Jean-Yves; Desjardins, Benoît; Gallagher, Isabelle; Grenier, Emmanuel. Fluids with anisotropic viscosity. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 2, pp. 315-335. http://www.numdam.org/item/M2AN_2000__34_2_315_0/

[1] A. Babin, A. Mahalov and B. Nicolaenko, Global Splitting, Integrability and Regularity of 3D Euler and Navier Stokes Equations for Uniformly Rotating Fluids. Eur. J. Mech. 15 (1996) 291-300. | MR 1400515 | Zbl 0882.76096

[2] J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l'École Normale Superieure 14 (1981) 209-246. | Numdam | MR 631751 | Zbl 0495.35024

[3] J.-Y. Chemin, Fluides parfaits incompressibles. Astérisque 230 (1995). | MR 1340046 | Zbl 0829.76003

[4] J.-Y. Chemin, A propos d'un problème de pénalisation de type antisymétrique. J. Math. Pures. Appl. 76 (1997) 739-755. | MR 1485418 | Zbl 0896.35103

[5] J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes. J. Differential Equations 121 (1992) 314-328. | MR 1354312 | Zbl 0878.35089

[6] J.-Y. Chemin and B. Desjardins, I. Gallagher and E. Grenier, Anisotropy and dispersion in rotating fluids, preprint of Universite d'Orsay (1999). | MR 1735883 | Zbl 0961.76085

[7] B. Desjardins and E. Grenier, On the homogeneous model of wind driven ocean circulation. SIAM. J. Appl. Math. (to appear). | MR 1740834 | Zbl 0958.76092

[8] B. Desjardins and E. Grenier, Dérivation of quasi-geostrophic potential vorticity equations. Adv. in Differential Equations 3 (1998), No. 5, 715-752. | MR 1665870 | Zbl 0967.76096

[9] B. Desjardins and E. Grenier, Low Mach number limit of compressible flows in the whole space. Proceedmgs of the Royal Society of London A. 455 (1999) 2271-2279. | MR 1702718 | Zbl 0934.76080

[10] H. Fujita and T. Kato, On the Navier Stokes initial value problem I. Archiv for Rational Mechanic Analysis 16 (1964) 269-315. | MR 166499 | Zbl 0126.42301

[11] I. Gallagher, The Tridimensional Navier-Stokes Equations with Almost Bidimensional Data: Stability, Uniqueness and Life Span. International Mathematics Research Notices 18 (1997) 919-935. | MR 1481611 | Zbl 0893.35098

[12] H. P. Greenspan, The theory of rotating fluids. Cambridge monographs on mechanics and applied mathematics (1969). | Zbl 0182.28103

[13] E. Grenier and N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations 22, No. 5-6, (1997) 953-975. | MR 1452174 | Zbl 0880.35093

[14] D. Iftimie, La résolution des équations de Navier Stokes dans des domaines minces et la limite quasigéostrophique. Thèse de l'Université Paris 6 (1997).

[15] D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces. Revista Matematica Ibero-Americana 15 (1999) 1-36. | MR 1681635 | Zbl 0923.35119

[16] J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1933) 193-248. | JFM 60.0726.05

[17] J. Pedlosky, Geophysical fluid dynamics, Springer (1979). | Zbl 0429.76001

[18] J. Rauch and M. Reed, Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension. Duke Mathematical Journal 49 (1982) 397-475. | MR 659948 | Zbl 0503.35055

[19] M. Sablé-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires. Annales de l'Institut Fourier 36 (1986) 39-82. | Numdam | MR 840713 | Zbl 0577.35004