On the mathematical analysis and optimization of chemical vapor infiltration in materials science
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 2, p. 337-351
@article{M2AN_2000__34_2_337_0,
     author = {Ditkowski, Adi and Gottlieb, David and Sheldon, Brian W.},
     title = {On the mathematical analysis and optimization of chemical vapor infiltration in materials science},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {34},
     number = {2},
     year = {2000},
     pages = {337-351},
     zbl = {0962.76083},
     mrnumber = {1765663},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_2_337_0}
}
Ditkowski, Adi; Gottlieb, David; Sheldon, Brian W. On the mathematical analysis and optimization of chemical vapor infiltration in materials science. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 2, pp. 337-351. http://www.numdam.org/item/M2AN_2000__34_2_337_0/

[1] E. Fitzer and R. Gadow, Am. Ceram. Soc. Bull. 65 (1986) 326-355.

[2] S. M. Gupte and J. A. Tsamopoulos, J. Electrochem. Soc. 136 (1989) 555-561.

[3] R. Aris, The Mathematical Theory of the Diffusion and Reaction in Permeable Catalysts, Oxford Umversity Press, London (1975). | Zbl 0315.76051

[4] A. Ditkowski, D. Gottlieb and B. W. Sheldon, Optimization of Chemical Vapor Infiltration with Simultaneous Powder Formation. J. Mater. Res. (submitted).

[5] H.-C. Chang, Minimizing Infiltration Time during Isothermal Chemical Vapor Infiltration, Ph.D. thesis, Brown Umversity (1995).

[6] F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York (1979).

[7] E. A. Mason and A. P. Malinauskas, Gas Transport in Porous Media: The Dusty-Gas Model, Elsevier Science Publisher (1983).

[8] B. W. Sheldon and H.-C. Chang, in Ceramic Transactions, Vol. 42, B.W. Sheldon and S.C. Danforth Eds. (American Ceramic Society) (1994) 81-93.

[9] H.-C. Chang, T. F. Morse and B. W. Sheldon, J. Mater. Proc. Manuf. Sci. 2 (1994) 437-454.

[10] J. Y. Ofori and S. V. Sotirchos, AIChE Journal 42 (1996) 2828.

[11] H.-C. Chang, T. F. Morse and B. W. Sheldon, J. Am. Ceram. Soc. 7 (1997) 1805-1811.

[12] H.-C. Chang, D. Gottlieb, M. Marion and B. W. Sheldon, J. of Scientific Computing 13 (1998) 303-321. | MR 1656916 | Zbl 0933.76089

[13] P. Loll, P. Delhaes, A. Pacault and A. Pierre, Carbon 13 (1975) 159.

[14] P. Delhaes, in Electrochemical Society Proceedings 97-25, M.D. Allendorf and C. Bernard Eds. (Electrochemical Society) (1997) 486-495.

[15] T. M. Besmann, Oak Ridge National Laboratory, unpublished results (1998).

[16] S. Bammidipati, G.D. Stewart, G.R. Jr. Elliott, S.A. Gokoglu and M.J. Purdy, AIChE Journal 42, No. 11, (1996) 3123-3132.

[17] T.M. Besmann, J.W. Klett and T.D. Burchell, in MRS Symposium Proceedings (Materials Research Society, Pittsburgh, 1998) 365-370.