Approximation of the three-field Stokes system via optimized quadrilateral finite elements
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 27 (1993) no. 1, p. 107-127
@article{M2AN_1993__27_1_107_0,
     author = {Ruas, V. and Carneiro de Ara\'ujo, J. H. and Silva Ramos, M. A. M.},
     title = {Approximation of the three-field Stokes system via optimized quadrilateral finite elements},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {27},
     number = {1},
     year = {1993},
     pages = {107-127},
     zbl = {0765.76053},
     mrnumber = {1204631},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1993__27_1_107_0}
}
Ruas, V.; Carneiro de Araújo, J. H.; Silva Ramos, M. A. M. Approximation of the three-field Stokes system via optimized quadrilateral finite elements. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 27 (1993) no. 1, pp. 107-127. http://www.numdam.org/item/M2AN_1993__27_1_107_0/

[1] R. A. Adams, Sobolev Spaces, Academic Press N. Y., 1968. | MR 450957 | Zbl 1098.46001

[2] R. B. Blrd, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, Vol 1, Fluid Mechanics, Second Edition, John Wiley & Sons, N. Y., 1987.

[3] J. Baranger and D. Sandri, Approximation par element finis d'écoulements de fluides viscoélastiques Existence de solutions approchées et majorations d'erreur I Contraintes continues, C. R. Acad. Sci. Paris, Tome 312, Série I (1991), 541-544. | MR 1099689 | Zbl 0718.76010

[4] M. Bercovier and O. Pironneau, Error estimates for the finite element method solution of the Stokes problem in the primitive variables, Numer. Math., 33 (1979), 211-224. | MR 549450 | Zbl 0423.65058

[5] J. H. Carneiro De Araújo, Métodos de Elementos Finitos Otimizados para o Sistema de Stokes Associado a Problemas de Viscoelasticidade, Doctoral dissertation, Pontificia Universidade Católica do Rio de Janeiro, 1991.

[6] M. S. Engelman, R. L. Sani, P. M. Gresho and M. Bercovier, Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements, Int. J. Num. Methods in Fluids, 2 (1982), 25-42. | MR 643172 | Zbl 0483.76013

[7] M. Fortin and A. Fortin, A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech., 32 (1989) 295-310. | Zbl 0672.76010

[8] M. Fortin and R. Pierre, On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows, Comput. Methods Appl. Mech, Engrg, 73 (1989) 341-350. | MR 1016647 | Zbl 0692.76002

[9] J. M. Marchal and M. Crochet, A new mixed finite element for calculating viscoelastic flow, J. Non-Newtonian Fluid Mech., 26 (1987) 77-117. | Zbl 0637.76009

[10] V. Ruas, An optimal three-field finite element approximation of the Stokes system with continuous extra stresses (to appear). | MR 1266524 | Zbl 0797.76045

[11] V. Ruas, A convergent three-field quadrilatéral finite element method for simulating viscoelastic flow on irregular meshes. Revue Européenne des Eléments Finis, Vol. 1, 4 (1992), 391-406. | MR 1266524 | Zbl 0924.76060

[12] V. Ruas and J. H. Carneiro De Araújo, Un método mejorado de segundo orden para la simulación de flujo viscoelástico con elementos finitos quadrilaterales, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol. 8, 1 (1992), 77-85. | MR 1160319