Approximation by finite element functions using local regularization
Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, Volume 9 (1975) no. R2, pp. 77-84.
@article{M2AN_1975__9_2_77_0,
     author = {Cl\'ement, Ph.},
     title = {Approximation by finite element functions using local regularization},
     journal = {Revue fran\c{c}aise d'automatique, informatique, recherche op\'erationnelle. Analyse num\'erique},
     pages = {77--84},
     publisher = {Dunod},
     address = {Paris},
     volume = {9},
     number = {R2},
     year = {1975},
     mrnumber = {400739},
     zbl = {0368.65008},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1975__9_2_77_0/}
}
TY  - JOUR
AU  - Clément, Ph.
TI  - Approximation by finite element functions using local regularization
JO  - Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique
PY  - 1975
SP  - 77
EP  - 84
VL  - 9
IS  - R2
PB  - Dunod
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1975__9_2_77_0/
LA  - en
ID  - M2AN_1975__9_2_77_0
ER  - 
%0 Journal Article
%A Clément, Ph.
%T Approximation by finite element functions using local regularization
%J Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique
%D 1975
%P 77-84
%V 9
%N R2
%I Dunod
%C Paris
%U http://www.numdam.org/item/M2AN_1975__9_2_77_0/
%G en
%F M2AN_1975__9_2_77_0
Clément, Ph. Approximation by finite element functions using local regularization. Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, Volume 9 (1975) no. R2, pp. 77-84. http://www.numdam.org/item/M2AN_1975__9_2_77_0/

[1] Ph. Clement, Un problème d'approximation par éléments finis, Annexe à la thèse de Doctorat, Ecole Polytechnique Fédérale de Lausane, 1973.

[2] J. J Goel, Construction of Basic Functions for Numerical Utilisation of Ritz-s Method, Numer. Math., (1968), 12, 435-447. | MR | Zbl

[3] M. Zlamal, On the Finite Element Method, Numer. Math., (1968), 12, 394-409. | MR | Zbl

[4] J. H. Bramble and M. Zlamal, Triangular Elements in the Finite Element Method, Math. of Comp. vol. 24, number 12, (1970), 809-820. | MR | Zbl

[5] G. Strang, Approximation in the finite element method, Numer Math., (1972), 19, 81-98. | MR | Zbl

[6] G Dupuis et J. J. Goel, Eléments finis raffinés en élasticité bidimensionnelle, ZAMP, vol. 20, (1969), 858-881. | Zbl

[7] J. Descloux, Méthodes des éléments finis, Dept. de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1973.

[8] J. Descloux, Two Basic Properties of Finite Eléments, Dept. of Math., Ecole Polytechnique Fédérale de Lausanne, 1973.

[9] P. G. Ciarlet and P. A. Raviart, General Lagrange and Hermite interpolation in R n with applications to finite elements methods, Arch. Rational Mech. Anal., 46 (1972), 177-199. | MR | Zbl

[10] G. Fichera, Linear elliptic differential systems and eigenvalue problems, Lecture Notes in Mathematics 8, Springer, 1965. | MR | Zbl

[11] S. Hilbert, A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations, Math. of Comp., 27 (1973), 81-89.tisf | MR | Zbl