We show that the Duffin and Schaeffer conjecture holds in all dimensions greater than one.
Nous montrons que la conjecture de Duffin et Schaeffer est vraie en toute dimension supérieure à .
@article{JTNB_1989__1_1_81_0, author = {Pollington, A. D. and Vaughan, R. C.}, title = {The $k$-dimensional {Duffin} and {Schaeffer} conjecture}, journal = {S\'eminaire de th\'eorie des nombres de Bordeaux}, pages = {81--88}, publisher = {Universit\'e Bordeaux I}, volume = {Ser. 2, 1}, number = {1}, year = {1989}, mrnumber = {1050267}, zbl = {0714.11048}, language = {en}, url = {http://www.numdam.org/item/JTNB_1989__1_1_81_0/} }
TY - JOUR AU - Pollington, A. D. AU - Vaughan, R. C. TI - The $k$-dimensional Duffin and Schaeffer conjecture JO - Séminaire de théorie des nombres de Bordeaux PY - 1989 SP - 81 EP - 88 VL - 1 IS - 1 PB - Université Bordeaux I UR - http://www.numdam.org/item/JTNB_1989__1_1_81_0/ LA - en ID - JTNB_1989__1_1_81_0 ER -
Pollington, A. D.; Vaughan, R. C. The $k$-dimensional Duffin and Schaeffer conjecture. Séminaire de théorie des nombres de Bordeaux, Serie 2, Volume 1 (1989) no. 1, pp. 81-88. http://www.numdam.org/item/JTNB_1989__1_1_81_0/
1 Khintchine's problem in metric Diophantine approximation, Duke Math. J. 8 (1941), 243-255. | JFM | MR | Zbl
and ,2 On the distribution of convergents of almost all real numbers, J. Number Theory 2 (1970), 425-441. | MR | Zbl
,3 Approximation by reduced fractions, J. Math. Soc. of Japan 13 (1961), 342-345. | MR | Zbl
,4 Sieve methods," Academic Press, London, 1974. | Zbl
, "5 Metric theory of Diophantine approximations," V.H. Winston and Sons, Washington D.C., 1979. | Zbl
, "6 On the metric theory of Diophantine approximation, Pacific J. Math. 76 (1978), 527-539. | MR | Zbl
,7 On simultaneous approximations, Vesti Akad Navuk BSSR Ser Fiz.-Mat (1981), 41-47. | Zbl
,8, The Duffin and Schaeffer conjecture and simultaneous approximations, Dokl. Akad. Nauk BSSR 25 (1981), 780-783. | MR | Zbl