Pollington, A. D.; Vaughan, R. C.
The k-dimensional Duffin and Schaeffer conjecture
Journal de théorie des nombres de Bordeaux, Tome 1 (1989) no. 1 , p. 81-88
Zbl 0714.11048 | MR 1050267 | 1 citation dans Numdam
URL stable : http://www.numdam.org/item?id=JTNB_1989__1_1_81_0

Nous montrons que la conjecture de Duffin et Schaeffer est vraie en toute dimension supérieure à 1.
We show that the Duffin and Schaeffer conjecture holds in all dimensions greater than one.

Bibliographie

1 R.J. Duffin and A.C. Schaeffer, Khintchine's problem in metric Diophantine approximation, Duke Math. J. 8 (1941), 243-255. JFM 67.0145.03 | MR 4859 | Zbl 0025.11002

2 P. Erdös, On the distribution of convergents of almost all real numbers, J. Number Theory 2 (1970), 425-441. MR 271058 | Zbl 0205.34902

3 P.X. Gallagher, Approximation by reduced fractions, J. Math. Soc. of Japan 13 (1961), 342-345. MR 133297 | Zbl 0106.04106

4 Halberstam And Richert, "Sieve methods," Academic Press, London, 1974. Zbl 0298.10026

5 V.G. Sprindzuk, "Metric theory of Diophantine approximations," V.H. Winston and Sons, Washington D.C., 1979. Zbl 0482.10047

6 J.D. Vaaler, On the metric theory of Diophantine approximation, Pacific J. Math. 76 (1978), 527-539. MR 506128 | Zbl 0352.10026

7 V.T. Vilchinski, On simultaneous approximations, Vesti Akad Navuk BSSR Ser Fiz.-Mat (1981), 41-47. Zbl 0464.10040

8, The Duffin and Schaeffer conjecture and simultaneous approximations, Dokl. Akad. Nauk BSSR 25 (1981), 780-783. MR 631115 | Zbl 0473.10034