A smooth Lyapunov function from a class-𝒦ℒ estimate involving two positive semidefinite functions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 313-367.
@article{COCV_2000__5__313_0,
     author = {Teel, Andrew R. and Praly, Laurent},
     title = {A smooth {Lyapunov} function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {313--367},
     publisher = {EDP-Sciences},
     volume = {5},
     year = {2000},
     zbl = {0953.34042},
     mrnumber = {1765429},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2000__5__313_0/}
}
TY  - JOUR
AU  - Teel, Andrew R.
AU  - Praly, Laurent
TI  - A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2000
DA  - 2000///
SP  - 313
EP  - 367
VL  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_2000__5__313_0/
UR  - https://zbmath.org/?q=an%3A0953.34042
UR  - https://www.ams.org/mathscinet-getitem?mr=1765429
LA  - en
ID  - COCV_2000__5__313_0
ER  - 
Teel, Andrew R.; Praly, Laurent. A smooth Lyapunov function from a class-$\mathcal {KL}$ estimate involving two positive semidefinite functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 313-367. http://www.numdam.org/item/COCV_2000__5__313_0/

[1] A.N. Atassi and H.K. Khalil, A separation principle for the control of a class of nonlinear systems, in Proc. of the 37th IEEE Conference on Decision and Control Tampa, FL ( 1998) 855-860.

[2] J.-P. Aubin and A. Cellina, Differential Inclusions: Set-valued Maps and Viability Theory. Springer-Verlag, New York ( 1984). | MR 755330 | Zbl 0538.34007

[3] J.-P. Aubin and H. Frankowska, Set-valued Analysis. Birkhauser, Boston ( 1990). | MR 1048347 | Zbl 0713.49021

[4] A. Bacciotti and L. Rosier, Lyapunov and Lagrange stability: Inverse theorems for discontinuous systems. Math. Control Signals Systems 11 ( 1998) 101-128. | MR 1628047 | Zbl 0919.34051

[5] E.A. Barbashin and N.N Krasovskii, On the existence of a function of Lyapunov in the case of asymptotic stability in the large. Prikl. Mat. Mekh. 18 ( 1954) 345-350. | MR 62301 | Zbl 0055.32005

[6] F.H. Clarke, Y.S. Ledyaev and R.J. Stern, Asymptotic stability and smooth Lyapunov functions. J. Differential Equations 149 ( 1998) 69-114. | MR 1643670 | Zbl 0907.34013

[7] F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer ( 1998). | MR 1488695 | Zbl 1047.49500

[8] F.H. Clarke, R.J. Stern and P.R. Wolenski, Subgradient criteria for monotonicity, the Lipschitz condition, and convexity. Canad. J. Math. 45 ( 1993) 1167-1183. | MR 1247540 | Zbl 0810.49016

[9] W.P. Dayanwansa and C.F. Martin, A converse Lyapunov theorem for a class of dynamical systems which undergo switching, IEEE Trans. Automat. Control 44 ( 1999) 751-764. | MR 1684429 | Zbl 0960.93046

[10] K. Deimling, Multivalued Differential Equations. Walter de Gruyter, Berlin ( 1992). | MR 1189795 | Zbl 0760.34002

[11] A.F. Filippov, On certain questions in the theory of optimal control. SIAM J. Control 1 ( 1962) 76-84. | MR 149985 | Zbl 0139.05102

[12] A.F. Filippov, Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers ( 1988). | MR 1028776 | Zbl 0664.34001

[13] W. Hahn, Stability of Motion. Springer-Verlag ( 1967). | MR 223668 | Zbl 0189.38503

[14] F.C. Hoppensteadt, Singular perturbations on the infinite interval. Trans. Amer. Math. Soc. 123 ( 1966) 521-535. | MR 194693 | Zbl 0151.12502

[15] J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion. Amer. Math. Soc. Trans. Ser. 2 24 ( 1956) 19-77. | EuDML 11835 | Zbl 0127.30703

[16] V. Lakshmikantham, S. Leela and A.A. Martynyuk, Stability Analysis of Nonlinear Systems. Marcel Dekker, Inc. ( 1989). | MR 984861 | Zbl 0676.34003

[17] V. Lakshmikantham and L. Salvadori, On Massera type converse theorem in terms of two different measures. Bull. U.M.I. 13 ( 1976) 293-301. | MR 440136 | Zbl 0351.34030

[18] Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 ( 1996) 124-160. | MR 1372908 | Zbl 0856.93070

[19] A.M. Lyapunov, The general problem of the stability of motion. Math. Soc. of Kharkov, 1892 (Russian). [English Translation: Internat. J. Control 55 ( 1992) 531-773]. | MR 1154209 | Zbl 0786.70001

[20] I.G. Malkin, On the question of the reciprocal of Lyapunov's theorem on asymptotic stability. Prikl. Mat. Mekh. 18 ( 1954) 129-138. | Zbl 0055.32004

[21] J.L. Massera, On Liapounoff's conditions of stability. Ann. of Math. 50 ( 1949) 705-721. | MR 35354 | Zbl 0038.25003

[22] J.L. Massera, Contributions to stability theory. Ann. of Math. 64 ( 1956) 182-206. (Erratum: Ann. of Math. 68 ( 1958) 202.) | MR 79179 | Zbl 0070.31003

[23] A.M. Meilakhs, Design of stable control systems subject to parametric perturbations. Avtomat. i Telemekh. 10 ( 1978) 5-16. | MR 533365 | Zbl 0419.93038

[24] A.P. Molchanov and E.S. Pyatnitskii, Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems I. Avtomat. i Telemekh. ( 1986) 63-73. | MR 839959 | Zbl 0607.93039

[25] A.P. Molchanov and E.S. Pyatnitskiin, Lyapunov functions that specify necessary and sufficient conditions of absolute stability of nonlinear nonstationary control systems II. Avtomat. i Telemekh. ( 1986) 5-14. | MR 848396 | Zbl 0618.93051

[26] A.P. Molchanov and E.S. Pyatnitskii, Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 ( 1989) 59-64. | MR 1006848 | Zbl 0684.93065

[27] A.A. Movchan, Stability of processes with respect to two measures. Prikl. Mat. Mekh. ( 1960) 988-1001. | Zbl 0100.08401

[28] I.P. Natanson, Theory of Functions of a Real Variable. Vol. 1. Frederick Ungar Publishing Co. ( 1974). | MR 67952 | Zbl 0064.29102

[29] E.P. Ryan, Discontinuous feedback and universal adaptive stabilization, in Control of Uncertain Systems, edited by D. Hinrichsen and B. Martensson. Birkhauser, Boston ( 1990) 245-258. | MR 1206689 | Zbl 0726.93069

[30] E.D. Sontag, Comments on integral variants of ISS. Systems Control Lett. 34 ( 1998) 93-100. | MR 1629012 | Zbl 0902.93062

[31] E.D. Sontag and Y. Wang, A notion of input to output stability, in Proc. European Control Conf. Brussels ( 1997), Paper WE-E A2, CD-ROM file ECC958.pdf.

[32] E.D. Sontag and Y. Wang, Notions of input to output stability. Systems Control Lett. 38 ( 1999) 235-248. | MR 1754906 | Zbl 0985.93051

[33] E.D. Sontag and Y. Wang, Lyapunov characterizations of input to output stability. SIAM J. Control Optim. (to appear). | MR 1339057 | Zbl 0968.93076

[34] A.M. Stuart and A.R. Humphries, Dynamical Systems and Numerical Analysis. Cambridge University Press, New York ( 1996). | MR 1402909 | Zbl 0869.65043

[35] A.R. Teel and L. Praly, Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33 ( 1995) 1443-1488. | MR 1348117 | Zbl 0843.93057

[36] J. Tsinias, A Lyapunov description of stability in control systems. Nonlinear Anal. 13 ( 1989) 63-74. | MR 973369 | Zbl 0695.93083

[37] J. Tsinias and N. Kalouptsidis, Prolongations and stability analysis via Lyapunov functions of dynamical polysystems. Math. Systems Theory 20 ( 1987) 215-233. | MR 920776 | Zbl 0642.93052

[38] J. Tsinias, N. Kalouptsidis and A. Bacciotti, Lyapunov functions and stability of dynamical polysystems. Math. Systems Theory 19 ( 1987) 333-354. | MR 888495 | Zbl 0628.93056

[39] V.I. Vorotnikov, Stability and stabilization of motion: Research approaches, results, distinctive characteristics. Avtomat. i Telemekh. ( 1993) 3-62. | MR 1225444 | Zbl 0800.93947

[40] F.W. Wilson, Smoothing derivatives of functions and applications. Trans. Amer. Math. Soc. 139 ( 1969) 413-428. | MR 251747 | Zbl 0175.20203

[41] T. Yoshizawa, Stability Theory by Lyapunov's Second Method. The Mathematical Society of Japan ( 1966). | MR 208086 | Zbl 0144.10802

[42] K. Yosida, Functional Analysis, 2nd Edition. Springer Verlag, New York ( 1968). | MR 239384 | Zbl 0435.46002