Boundary layer tails in periodic homogenization
ESAIM: Control, Optimisation and Calculus of Variations, Volume 4 (1999), p. 209-243
@article{COCV_1999__4__209_0,
     author = {Allaire, Gr\'egoire and Amar, Micol},
     title = {Boundary layer tails in periodic homogenization},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {4},
     year = {1999},
     pages = {209-243},
     zbl = {0922.35014},
     mrnumber = {1696289},
     language = {en},
     url = {http://www.numdam.org/item/COCV_1999__4__209_0}
}
Allaire, Grégoire; Amar, Micol. Boundary layer tails in periodic homogenization. ESAIM: Control, Optimisation and Calculus of Variations, Volume 4 (1999) pp. 209-243. http://www.numdam.org/item/COCV_1999__4__209_0/

[1] T. Abboud and H. Ammari, Diffraction at a curved grating, TM and TE cases, homogenization. J. Math. Anal. Appl. 202 ( 1996) 995-1206. | MR 1408364 | Zbl 0865.35122

[2] Y. Achdou, Effect d'un revêtement métallisé mince sur la réflexion d'une onde électromagnétique. C.R. Acad. Sci. Paris Sér. I Math. 314 ( 1992) 217-222. | MR 1150836 | Zbl 0800.78017

[3] Y. Achdou and O. Pironneau, Domain decomposition and wall laws. C.R. Acad. Sci. Paris Sér. I Math. 320 ( 1995) 541-547. | MR 1322334 | Zbl 0834.76014

[4] Y. Achdou and O. Pironneau, A 2nd order condition for flow over rough walls, in Proc. Int. Conf. on Nonlinear Diff. Eqs. and Appl., Bangalore, Shrikant Ed. ( 1996).

[5] G. Allaire and G. Bal, Homogenization of the criticality spectral equation in neutron transport. M2AN to appear. | Numdam | MR 1726482 | Zbl 0931.35010

[6] G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures et Appl. 77 ( 1998) 153-208. | MR 1614641 | Zbl 0901.35005

[7] G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal. 29 ( 1998) 343-379. | MR 1616495 | Zbl 0918.35018

[8] M. Avellaneda and F.-H. Lin, Homogenization of elliptic problems with Lp boundary data. Appl. Math. Optim. 15 ( 1987) 93-107. | MR 868901 | Zbl 0644.35034

[9] M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization. C.P.A.M., XL ( 1987) 803-847. | MR 910954 | Zbl 0632.35018

[10] I. Babu_Ka, Solution of interface problems by homogenization I, II, III. SIAM J. Math. Anal. 7 ( 1976) 603-634 and 635-645; 8 ( 1977) 923-937. | MR 509282 | Zbl 0343.35023

[11] N. Bakhvalov and G. Panasenko, Homogenization, averaging processes in periodic media. Kluwer Academic Publishers, Dordrecht, Mathematics and its Applications 36 ( 1990). | MR 1112788 | Zbl 0692.73012

[12] G. Bal, First-order corrector for the homogenization of the criticality eigenvalue problem in the even parity formulation of the neutron transport, to appear. | MR 1718300 | Zbl 0937.35007

[13] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North Holland, Amsterdam ( 1978). | MR 503330 | Zbl 0404.35001

[14] A. Bensoussan, J.L. Lions and G. Papanicolaou, Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15 ( 1979) 53-157. | MR 533346 | Zbl 0408.60100

[15] A. Bourgeat and E. Marusic-Paloka, Non-linear effects for flow in periodically constricted channel caused by high injection rate. Mathematical Models and Methods in Applied Sciences 8 ( 1998) 379-405. | MR 1624867 | Zbl 0920.76082

[16] R. Brizzi and J.P. Chalot, Homogénéisation de frontière. PhD Thesis, Université de Nice ( 1978.

[17] G. Buttazzo and R.V. Kohn, Reinforcement by a thin layer with oscillating thickness. Appl. Math. Optim. 16 ( 1987) 247-261. | MR 901816

[18] G. Chechkin, A. Friedman and A. Piatnitski, The boundary-value problem in domains with very rapidly oscillating boundary. INRIA Report 3062 ( 1996).

[19] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique, Tome 3, Masson, Paris ( 1984). | MR 792484

[20] B. Engquist and J.C. Nédélec, Effective boundary conditions for accoustic and electro-magnetic scaterring in thin layers. Internal report 278, CMAP Ecole Polytechnique ( 1993).

[21] A. Friedman, B. Hu and Y. Liu, A boundary value problem for the Poisson equation with multi-scale oscillating boundary. J. Diff. Eq. 137 ( 1997) 54-93. | MR 1451536 | Zbl 0878.35014

[22] W. Jäger and A. Mikelic, On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 23 ( 1996) 403-465. | Numdam | MR 1440029 | Zbl 0878.76076

[23] E. Landis and G. Panasenko, A theorem on the asymptotics of solutions of elliptic equations with coefficients periodic in all variables except one. Soviet Math. Dokl. 18 ( 1977) 1140-1143. | Zbl 0378.35020

[24] J.L. Lions, Some methods in the mathematical analysis of systems and their controls. Science Press, Beijing, Gordon and Breach, New York ( 1981). | MR 664760 | Zbl 0542.93034

[25] S. Moskow and M. Vogelius, First order corrections to the homogenized eigenvalues of a periodic composite medium. A convergence proof. Proc. Roy. Soc. Edinburg 127 ( 1997) 1263-1295. | MR 1489436 | Zbl 0888.35011

[26] O. Oleinik, A. Shamaev and G. Yosifian, Mathematical problems in elasticity and homogenization. North Holland, Amsterdam ( 1992). | MR 1195131 | Zbl 0768.73003

[27] E. Sánchez-Palencia, Non homogeneous media and vibration theory. Springer Verlag, Lecture notes in physics 127 ( 1980). | MR 578345 | Zbl 0432.70002

[28] F. Santosa and W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51 ( 1991) 984-1005. | MR 1117428 | Zbl 0741.73017

[29] F. Santosa and M. Vogelius, First-order corrections to the homogenized eigenvalues of a periodic composite medium. SIAM J. Appl. Math. 53 ( 1993) 1636-1668. | MR 1247172 | Zbl 0808.35085