Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically n , n>2
Compositio Mathematica, Volume 75 (1990) no. 2, pp. 219-230.
@article{CM_1990__75_2_219_0,
     author = {Delano\"e, Philippe},
     title = {Extending {Calabi{\textquoteright}s} conjecture to complete noncompact {K\"ahler} manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$},
     journal = {Compositio Mathematica},
     pages = {219--230},
     publisher = {Kluwer Academic Publishers},
     volume = {75},
     number = {2},
     year = {1990},
     mrnumber = {1065207},
     zbl = {0703.53056},
     language = {en},
     url = {http://www.numdam.org/item/CM_1990__75_2_219_0/}
}
TY  - JOUR
AU  - Delanoë, Philippe
TI  - Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$
JO  - Compositio Mathematica
PY  - 1990
SP  - 219
EP  - 230
VL  - 75
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://www.numdam.org/item/CM_1990__75_2_219_0/
LA  - en
ID  - CM_1990__75_2_219_0
ER  - 
%0 Journal Article
%A Delanoë, Philippe
%T Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$
%J Compositio Mathematica
%D 1990
%P 219-230
%V 75
%N 2
%I Kluwer Academic Publishers
%U http://www.numdam.org/item/CM_1990__75_2_219_0/
%G en
%F CM_1990__75_2_219_0
Delanoë, Philippe. Extending Calabi’s conjecture to complete noncompact Kähler manifolds which are asymptotically $\mathbb {C}^n$, $n > 2$. Compositio Mathematica, Volume 75 (1990) no. 2, pp. 219-230. http://www.numdam.org/item/CM_1990__75_2_219_0/

1 R.L. Bishop and S.I. Goldberg, On the second cohomology group of a Kähler manifold of positive curvature, Proc. Amer. Math. Soc. 16 (1965), 119-122. | MR | Zbl

2 E. Calabi, The space of Kähler metrics, Proc. Internat. Congress Math. Amsterdam (1954), vol. 2, 206-207.

3 E. Calabi, A construction of nonhomogeneous Einstein metrics, Proc. Amer. Math. Soc. 27 (1975), 17-24. | MR | Zbl

4 A. Chaljub-Simon and Y. Choquet-Bruhat, Problèmes elliptiques du second ordre sur une variété euclidienne à l'infini, Ann. Fac. Sc. Toulouse 1 (1978), 9-25. | EuDML | Numdam | MR | Zbl

5 P. Delanoë, Analyse asymptotiquement euclidienne de l'opérateur de Monge-Ampère réel, preprint Nice (1988).

6 P. Delanoë, Partial decay on simple manifolds, Preprint Université de Nice (1990). | MR | Zbl

7 P. Delanoë, Local inversion of elliptic problems on compact manifolds, to appear in Mathematica Japonica, Vol. 35 (1990). | MR | Zbl

8 P. Delanoë, Obstruction to prescribed positive Ricci curvature, to appear in Pacific J. Math. | MR | Zbl

9 G. De Rham, Variétés différentiables, Hermann Paris (1960), Actualités Sc. et Industr. 1222. | MR | Zbl

10 D Deturck, Metrics with prescribed Ricci curvature, Seminar on Differential Geometry, Edit. S. T. Yau, Annals of Math. St. 102, Princeton Univ. Press (1982), 525-537. | MR | Zbl

11 D Deturck and N. Koiso, Uniqueness and non-existence of metrics with prescribed Ricci curvature, Ann. I. H. P. Anal. non lin. 1 (1984), 351-359. | Numdam | MR | Zbl

12 A. Jeune, Un analogue du théorème de Calabi-Yau sur Cn, n > 2, Preprint (1990).

13 J.L. Kazdan, Prescribing the curvature of a Riemannian manifold, Amer. Math. Soc. CBMS Regional Conf. 57 (1985). | MR | Zbl

14 K. Kodaira, Harmonic fields in Riemannian geometry (generalized potential theory), Ann. of Math. 50 (1949), 587-665. | MR | Zbl

15 K. Kodaira and J. Morrow, Complex manifolds, Holt Rinehart & Winston (1971). | MR | Zbl

16 A. Lichnerowicz, Théories relativistes de la gravitation et de l'électromagnétisme, Masson, Paris (1955). | Zbl

17 R. Lockhart, Fredholm, Hodge and Liouville theorems on noncompact manifolds, Trans. Amer. Math. Soc. 301 (1987), 1-35. | MR | Zbl

18 N. Mok, Y.-T. Siu and S.-T. Yau, The Poincaré-Lelong equation on complete Kähler manifolds, Compositio Math. 44 (1981), 183-218. | Numdam | MR | Zbl

19 R. Schoen and S.-T. Yau, Complete three dimensional manifolds with positive Ricci and scalar curvature, Seminar on Differential Geometry, Edit. S.T. Yau, Annals of Math. St. 102, Princeton Univ. Press (1982), 209-228. | MR | Zbl

20 S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. XXXI (1978), 339-411. | MR | Zbl