On the homotopy groups of some equivariant automorphism groups of spheres
Compositio Mathematica, Volume 31 (1975) no. 2, pp. 229-234.
@article{CM_1975__31_2_229_0,
     author = {Erle, Dieter},
     title = {On the homotopy groups of some equivariant automorphism groups of spheres},
     journal = {Compositio Mathematica},
     pages = {229--234},
     publisher = {Noordhoff International Publishing},
     volume = {31},
     number = {2},
     year = {1975},
     mrnumber = {391137},
     zbl = {0313.57034},
     language = {en},
     url = {http://www.numdam.org/item/CM_1975__31_2_229_0/}
}
TY  - JOUR
AU  - Erle, Dieter
TI  - On the homotopy groups of some equivariant automorphism groups of spheres
JO  - Compositio Mathematica
PY  - 1975
SP  - 229
EP  - 234
VL  - 31
IS  - 2
PB  - Noordhoff International Publishing
UR  - http://www.numdam.org/item/CM_1975__31_2_229_0/
LA  - en
ID  - CM_1975__31_2_229_0
ER  - 
%0 Journal Article
%A Erle, Dieter
%T On the homotopy groups of some equivariant automorphism groups of spheres
%J Compositio Mathematica
%D 1975
%P 229-234
%V 31
%N 2
%I Noordhoff International Publishing
%U http://www.numdam.org/item/CM_1975__31_2_229_0/
%G en
%F CM_1975__31_2_229_0
Erle, Dieter. On the homotopy groups of some equivariant automorphism groups of spheres. Compositio Mathematica, Volume 31 (1975) no. 2, pp. 229-234. http://www.numdam.org/item/CM_1975__31_2_229_0/

[1] Browder, W.: Torsion in H-spaces. Ann. Math. 74 (1961), 24-51. | MR | Zbl

[2] Burghelea, D.: On the homotopy type of Diff (Mn) and connected problems. Mimeographed manuscript.

[2a] Cerf, J.: Sur les difféomorphismes de la sphère de dimension trois. Springer Lect. Notes in Math. No. 53, Berlin 1968. | MR | Zbl

[3] Erle, D.: Some non-linear equivariant sphere bundles. Comm. Math. Helv. 48 (1973), 498-510. | MR | Zbl

[4] Erle, D. and Hsiang, W.C.: On certain unitary and symplectic actions with three orbit types. Amer. J. Math. 94 (1972), 289-308. | MR | Zbl

[5] Hsiang, W.C. and Hsiang, W.Y.: Differentiable actions of compact connected classical groups I. Amer. J. Math. 89 (1967), 705-786. | MR | Zbl

[6] Jänich, K.: Differenzierbare Mannigfaltigkeiten mit Rand als Orbiträume differenzierbarer G-Mannigfaltigkeiten ohne Rand. Topology 5 (1966), 301-320. | MR | Zbl

[7] Jänich, K.: Differenzierbare G-Mannigfaltigkeiten. Springer Lect. Notes in Math. No. 59, Berlin 1968. | MR | Zbl

[8] Mimura, M. and Toda, H.: Homotopy groups of SU(3), SU(4) and Sp(2). J. Math. Kyoto Univ. 3 (1964), 217-250. | MR | Zbl

[9] Steenrod, N.: The topology of fibre bundles. Princeton Univ. Press. Princeton, N.J., 1951. | MR | Zbl