@article{CM_1975__31_2_219_0, author = {Casselman, William and Osborne, M. Scott}, title = {The $n$-cohomology of representations with an infinitesimal character}, journal = {Compositio Mathematica}, pages = {219--227}, publisher = {Noordhoff International Publishing}, volume = {31}, number = {2}, year = {1975}, zbl = {0343.17006}, mrnumber = {396704}, language = {en}, url = {http://www.numdam.org/item/CM_1975__31_2_219_0/} }
TY - JOUR AU - Casselman, William AU - Osborne, M. Scott TI - The $n$-cohomology of representations with an infinitesimal character JO - Compositio Mathematica PY - 1975 DA - 1975/// SP - 219 EP - 227 VL - 31 IS - 2 PB - Noordhoff International Publishing UR - http://www.numdam.org/item/CM_1975__31_2_219_0/ UR - https://zbmath.org/?q=an%3A0343.17006 UR - https://www.ams.org/mathscinet-getitem?mr=396704 LA - en ID - CM_1975__31_2_219_0 ER -
Casselman, William; Osborne, M. Scott. The $n$-cohomology of representations with an infinitesimal character. Compositio Mathematica, Tome 31 (1975) no. 2, pp. 219-227. http://www.numdam.org/item/CM_1975__31_2_219_0/
[1] Une nouvelle demonstration d'un théorème de R. Bott et B. Kostant. Bull. Math. Soc. France 95 (1967) 205-242. | Numdam | MR 236311 | Zbl 0155.06901
:[2] Remarks on 'Lie algebra cohomology and the generalized Borel-Weil theorem' by B. Kostant. Ann. of Math. 74 (1961) 388-390. | MR 142698 | Zbl 0134.03502
:[3] Some general results on admissible representations of p-adic groups. (to appear)
:[4] Introduction to Lie algebras and representation theory. New York: Springer, 1972. | MR 323842 | Zbl 0254.17004
:[5] Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. 74 (1961) 329-387. | MR 142696 | Zbl 0134.03501
:[6] Lie group representations on polynomial rings. Amer. J. of Math. 85 (1963) 327-404. | MR 158024 | Zbl 0124.26802
:[7] Yale University Ph.D. thesis. (1973).
:[8] Harmonic analysis on semi-simple groups I. New York, Springer, 1972. | Zbl 0265.22020
: