Γ-convergence for stable states and local minimizers
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 10 (2011) no. 1, p. 193-206

We introduce new definitions of convergence, based on adding stability criteria to Γ-convergence, that are suitable in many cases for studying convergence of local minimizers.

Published online : 2018-06-21
Classification:  49J45,  49K40
@article{ASNSP_2011_5_10_1_193_0,
     author = {Braides, Andrea and Larsen, Christopher J.},
     title = {$\Gamma $-convergence for stable states and local minimizers},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {1},
     year = {2011},
     pages = {193-206},
     zbl = {1233.49009},
     mrnumber = {2829315},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2011_5_10_1_193_0}
}
Braides, Andrea; Larsen, Christopher J. $\Gamma $-convergence for stable states and local minimizers. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 10 (2011) no. 1, pp. 193-206. http://www.numdam.org/item/ASNSP_2011_5_10_1_193_0/

[1] E. Acerbi and G. Buttazzo, On the limits of periodic Riemannian metrics, J. Anal. Math. 43 (1983), 183–201. | MR 777417 | Zbl 0564.49025

[2] R. Alicandro, A. Braides and M. Cicalese, Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint, Netw. Heterog. Media 1 (2006), 85–107. | MR 2219278 | Zbl 1131.49029

[3] L. Ambrosio and A. Braides, Functionals defined on partitions of sets of finite perimeter, II: semicontinuity, relaxation and homogenization J. Math. Pures. Appl. 69 (1990), 307–333. | MR 1070482 | Zbl 0676.49029

[4] A. Braides, “Γ-convergence for Beginners”, Oxford University Press, Oxford, 2002. | MR 1968440 | Zbl 1198.49001

[5] A. Braides, A handbook of Γ-convergence, In: “Handbook of Differential Equations. Stationary Partial Differential Equations”, Vol. 3, M. Chipot and P. Quittner (eds.), Elsevier, 2006. | MR 2569337 | Zbl 1195.35002

[6] A. Braides and A. Defranceschi, “Homogenization of Multiple Integrals”, Oxford University Press, Oxford, 1998. | MR 1684713 | Zbl 0911.49010

[7] A. Braides and L. Truskinovsky, Asymptotic expansions by Gamma-convergence, Contin. Mech. Thermodyn. 20 (2008), 21–62. | MR 2398821 | Zbl 1160.74363

[8] G. Dal Maso, “An Introduction to Γ-convergence”, Birkhäuser, Boston, 1993. | MR 1201152 | Zbl 0816.49001

[9] L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. | MR 1158660

[10] R. L. Jerrard and P. Sternberg, Critical points via Gamma-convergence: general theory and applications, J. Eur. Math. Soc. 11 (2009), 705–753. | MR 2538502 | Zbl 1171.49011

[11] R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 69–84. | MR 985990 | Zbl 0676.49011

[12] C. J. Larsen, Epsilon-stable quasi-static brittle fracture evolution, Comm. Pure Appl. Math. 63 (2010), 630–654. | MR 2583308

[13] E. Sandier and S. Serfaty, Gamma-Convergence of Gradient Flows and Application to Ginzburg-Landau, Comm. Pure Appl. Math. 57 (2004), 1627–1672. | MR 2082242 | Zbl 1065.49011

[14] S. Serfaty, Stability in 2D Ginzburg-Landau passes to the limit, Indiana Univ. Math. J. 54 (2005), 199–222 | MR 2126721 | Zbl 1137.35074