Regularity for the CR vector bundle problem II
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 10 (2011) no. 1, p. 129-191

We derive a 𝒞 k+1 2 Hölder estimate for Pϕ, where P is either of the two solution operators in Henkin’s local homotopy formula for ¯ b on a strongly pseudoconvex real hypersurface M in n , ϕ is a (0,q)-form of class 𝒞 k on M, and k0 is an integer. We also derive a 𝒞 a estimate for Pϕ, when ϕ is of class 𝒞 a and a0 is a real number. These estimates require that M be of class 𝒞 k+5 2 , or 𝒞 a+2 , respectively. The explicit bounds for the constants occurring in these estimates also considerably improve previously known such results.

These estimates are then applied to the integrability problem for CR vector bundles to gain improved regularity. They also constitute a major ingredient in a forthcoming work of the authors on the local CR embedding problem.

Published online : 2018-06-21
Classification:  32V05,  32A26,  32T15
@article{ASNSP_2011_5_10_1_129_0,
     author = {Gong, Xianghong and Webster, Sidney M.},
     title = {Regularity for the CR vector bundle problem II},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {1},
     year = {2011},
     pages = {129-191},
     zbl = {1223.32022},
     mrnumber = {2829316},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2011_5_10_1_129_0}
}
Gong, Xianghong; Webster, Sidney M. Regularity for the CR vector bundle problem II. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 10 (2011) no. 1, pp. 129-191. http://www.numdam.org/item/ASNSP_2011_5_10_1_129_0/

[1] J. Bruna and J. M. Burgués, Holomorphic approximation and estimates for the ¯-equation on strictly pseudoconvex nonsmooth domains, Duke Math. J. 55 (1987), 539–596. | MR 904941 | Zbl 0645.32009

[2] S.-C. Chen and M.-C. Shaw, “Partial Differential Equations in Several Complex Variables”, AMS/IP Studies in Advanced Mathematics, Vol. 19, Amer. Math. Soc., Providence, RI, International Press, Boston, MA, 2001. | MR 1800297 | Zbl 0963.32001

[3] G. B. Folland and E. M. Stein, Estimates for the ¯ b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. | MR 367477 | Zbl 0293.35012

[4] K. O. Friedrichs, The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc. 55 (1944), 132–151 | MR 9701 | Zbl 0061.26201

[5] X. Gong and S. M. Webster, Regularity for the CR vector bundle problem I, Pure and Appl. Math. Quarterly 6 (2010), 983–998. | MR 2742034 | Zbl 1219.32016

[6] X. Gong and S. M. Webster, Regularity in the local CR embedding problem, J. Geom. Anal. DOI: 10.1007/s12220 - 010 - 9192 - 6. | MR 2868966

[7] G. M. Henkin, The Lewy equation and analysis on pseudoconvex domains, Russian Math. Surveys 32 (1977), 59–130. | MR 454067 | Zbl 0382.35038

[8] G. M. Henkin and A. V. Romanov, Exact Hölder estimates of the solutions of the ¯-equation, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1171–1183. | MR 293121 | Zbl 0218.35069

[9] L. Hörmander, The boundary problems of physical geodesy, Arch. Rational Mech. Anal. 62 (1976), 1–52. | MR 602181 | Zbl 0331.35020

[10] L. Hörmander, “An Introduction to Complex Analysis in Several Variables”, North Holland, Amsterdam, 3rd edition, 1990. | MR 1045639 | Zbl 0685.32001

[11] N. Kerzman, Hölder and L p estimates for solutions of ¯u=f in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301–379. | MR 281944 | Zbl 0217.13202

[12] I. Lieb and R. M. Range, Lösungsoperatoren für den Cauchy-Riemann-Komplex mit 𝒞 k -Abschätzungen, Math. Ann. 253 (1980), 145–164. | MR 597825 | Zbl 0441.32007

[13] L. Ma and J. Michel, Local regularity for the tangential Cauchy-Riemann complex, J. Reine Angew. Math. 442 (1993), 63–90. | MR 1234836 | Zbl 0781.32022

[14] L. Ma and J. Michel, Regularity of local embeddings of strictly pseudoconvex CR structures, J. Reine Angew. Math. 447 (1994), 147–164. | MR 1263172 | Zbl 0791.32007

[15] J. Michel and L. Ma, On the regularity of CR structures for almost CR vector bundles, Math. Z. 218 (1995), 135–142. | MR 1312582 | Zbl 0816.32016

[16] A. Nagel and J.-P. Rosay, Nonexistence of homotopy formula for (0,1) forms on hypersurfaces in C 3 , Duke Math. J. 58 (1989), 823–827. | MR 1016447 | Zbl 0686.35085

[17] C. Romero, “Potential Theory for the Kohn Laplacian on the Heisenberg Group”, Thesis, University of Minnesota, 1991. | MR 2686874

[18] M.-C. Shaw, L p estimates for local solutions of ¯ b on strongly pseudo-convex CR manifolds, Math. Ann. 288 (1990), 35–62. | MR 1070923 | Zbl 0687.32017

[19] Y. T. Siu, The ¯ problem with uniform bounds on derivatives, Math. Ann. 207 (1974), 163–176. | MR 330515 | Zbl 0256.35061

[20] S. M. Webster, A new proof of the Newlander-Nirenberg theorem, Math. Z. 201 (1989), 303–316. | MR 999729 | Zbl 0651.32004

[21] S. M. Webster, On the local solution of the tangential Cauchy-Riemann equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 167–182. | Numdam | MR 995503 | Zbl 0679.32019

[22] S. M. Webster, On the proof of Kuranishi’s embedding theorem, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 183–207. | Numdam | MR 995504 | Zbl 0679.32020

[23] S. M. Webster, The integrability problem for CR vector bundles, In: “Several Complex Variables and Complex Geometry”, Part 3 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., 52, Part 3, Amer. Math. Soc., Providence, RI, 1991, 355–368. | MR 1128608 | Zbl 0744.32002