A variational method for a class of parabolic PDEs
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 10 (2011) no. 1, p. 207-252

In this manuscript we extend De Giorgi’s interpolation method to a class of parabolic equations which are not gradient flows but possess an entropy functional and an underlying Lagrangian. The new fact in the study is that not only the Lagrangian may depend on spatial variables, but it does not induce a metric. Assuming the initial condition to be a density function, not necessarily smooth, but solely of bounded first moments and finite “entropy”, we use a variational scheme to discretize the equation in time and construct approximate solutions. Then De Giorgi’s interpolation method is revealed to be a powerful tool for proving convergence of our algorithm. Finally we show uniqueness and stability in L 1 of our solutions.

Published online : 2018-06-21
Classification:  35K59,  49J40,  82C40,  47J25
@article{ASNSP_2011_5_10_1_207_0,
     author = {Figalli, Alessio and Gangbo, Wilfrid and Yolcu, T\"urkay},
     title = {A variational method for a class of parabolic PDEs},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {1},
     year = {2011},
     pages = {207-252},
     zbl = {1239.35074},
     mrnumber = {2829314},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2011_5_10_1_207_0}
}
Figalli, Alessio; Gangbo, Wilfrid; Yolcu, Türkay. A variational method for a class of parabolic PDEs. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 10 (2011) no. 1, pp. 207-252. http://www.numdam.org/item/ASNSP_2011_5_10_1_207_0/

[1] M.  Agueh, Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory, Adv. Differential Equations 10 (2005), 309–360. | MR 2123134 | Zbl 1103.35051

[2] H-W.  Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341. | MR 706391 | Zbl 0497.35049

[3] L. Ambrosio, N. Gigli and G. Savaré, “Gradient Flows in Metric Spaces and the Wasserstein Spaces of Probability Measures”, Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005. | MR 2129498 | Zbl 1090.35002

[4] P. Bernard and B. Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math. Soc. 9 (2007), 85–121. | MR 2283105 | Zbl 1241.49025

[5] B. Dacorogna, “Direct Methods in the Calculus of Variations”, Springer-Verlag, Berlin, 1989. | MR 990890 | Zbl 1140.49001

[6] E. De Giorgi, New problems on minimizing movements, In: “Boundary Value Problems for PDE and Applications”, C. Baiocchi and J. L. Lions (eds.), Masson, 1993, 81–98. | MR 1260440 | Zbl 0851.35052

[7] E. De Giorgi, A. Mariono and M. Tosques, Problems of evolutions in metric spaces and maximal decreasing curve, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur. (8) 68 (1980), 180–187. | MR 636814 | Zbl 0465.47041

[8] A. Fathi and A. Figalli, Optimal transportation on non-compact manifolds, Israel J. Math. 175 (2010), 1–59. | MR 2607536 | Zbl 1198.49044

[9] A. Figalli, Existence, uniqueness, and regularity of optimal transport maps, SIAM J. Math. Anal. 39 (2007) 126–137. | MR 2318378 | Zbl 1132.28322

[10] W. Gangbo, Quelques problèmes d’analyse convexe, Rapport d’habilitation à diriger des recherches, Jan. 1995. Available at http://www.math.gatech.edu/ gangbo/publications/.

[11] W. Gangbo and R. McCann, Optimal maps in Monge’s mass transport problem, C. R. Acad. Sci. Paris Série I Math. 321 (1995), 1653–1658. | MR 1367824 | Zbl 0858.49002

[12] W. Gangbo and R. McCann, The geometry of optimal transportation, Acta Math. 177 (1996), 113–161. | MR 1440931 | Zbl 0887.49017

[13] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math Anal. 29 (1998), 1–17. | MR 1617171 | Zbl 0915.35120

[14] S. Lisini, Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces, ESAIM Control Optim. Calc. Var. 15 (2009), 712–740. | Numdam | MR 2542579 | Zbl 1178.35201

[15] F. Otto, L 1 -contraction and uniqueness for quasilinear elliptic–parabolic equations, J. Differential Equations 131 (1996), 20–38. | MR 1415045 | Zbl 0862.35078

[16] C. Villani, “Topics in Optimal Transportation”, Graduate Studies in Mathematics, Vol. 58, American Mathematical Society, 2003. | MR 1964483 | Zbl 1106.90001

[17] C. Villani, “Optimal Transport, Old and New”, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 338, Springer-Verlag, Berlin, 2009. | MR 2459454 | Zbl 1156.53003

[18] T. Yolcu, “Parabolic Systems with an Underlying Lagrangian”, PhD Dissertation, Georgia Tech., 2009. | MR 2713797