Local tube realizations of CR-manifolds and maximal Abelian subalgebras
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 10 (2011) no. 1, p. 99-128

For every real-analytic CR-manifold M we give necessary and sufficient conditions that M can be realized in a suitable neighbourhood of a given point aM as a tube submanifold of some r . We clarify the question of the ‘right’ equivalence between two local tube realizations of the CR-manifold germ (M,a) by introducing two different notions of affine equivalence. One of our key results is a procedure that reduces the classification of equivalence classes to a purely algebraic manipulation in terms of Lie theory.

Published online : 2018-06-21
Classification:  32V05,  32V40,  32M25,  17B66
@article{ASNSP_2011_5_10_1_99_0,
     author = {Fels, Gregor and kaup, Wilhelm},
     title = {Local tube realizations of CR-manifolds and maximal Abelian subalgebras},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {1},
     year = {2011},
     pages = {99-128},
     zbl = {1229.32020},
     mrnumber = {2829317},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2011_5_10_1_99_0}
}
Fels, Gregor; kaup, Wilhelm. Local tube realizations of CR-manifolds and maximal Abelian subalgebras. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 5, Volume 10 (2011) no. 1, pp. 99-128. http://www.numdam.org/item/ASNSP_2011_5_10_1_99_0/

[1] M. S. Baouendi, L. P. Rothschild and F. Treves, CR structures with group action and extendibility of CR functions, Invent. Math. 82 (1985), 359–396. | MR 809720 | Zbl 0598.32019

[2] M. S. Baouendi - H. Jacobowitz and F. Treves, On the analyticity of CR mappings, Ann. of Math. 122 (1985), 365–400. | MR 808223 | Zbl 0583.32021

[3] M. S. Baouendi - P. Ebenfelt and L. P. Rothschild, “Real Submanifolds in Complex Spaces and Their Mappings”, Princeton Math. Series, Vol. 47, Princeton Univ. Press, 1998. | MR 1668103 | Zbl 0944.32040

[4] M. S. Baouendi - L. Rothschild and D. Zaitsev, Equivalences of real submanifolds in complex space, J. Differential Geom. 59 (2001), 301–351. | MR 1908985 | Zbl 1037.32030

[5] A. Boggess, “CR manifolds and the tangential Cauchy Riemann complex”, Studies in Advanced Mathematics, Boca Raton, FL: CRC Press, 1991. | MR 1211412 | Zbl 0760.32001

[6] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta. Math. 133 (1974), 219–271. | MR 425155 | Zbl 0302.32015

[7] J. Dadok and P. Yang, Automorphisms of tube domains and spherical hypersurfaces, Amer. J. Math. 107 (1985), 999–1013. | MR 796910 | Zbl 0586.32035

[8] G. Fels, Locally homogeneous finitely nondegenerate CR-manifolds, Math. Res. Lett. 14 (2007), 693–922. | MR 2357464 | Zbl 1155.32027

[9] G. Fels and W. Kaup, CR-manifolds of dimension 5: A Lie algebra approach, J. Reine Angew. Math. 604 (2007), 47–71. | MR 2320313 | Zbl 1128.32023

[10] G. Fels and W. Kaup, Classification of Levi degenerate homogeneous CR-manifolds of dimension 5, Acta Math. 201 (2008), 1–82. | MR 2448066 | Zbl 1171.32023

[11] G. Fels and W. Kaup, Classification of commutative algebras and tube realizations of hyperquadrics, arXiv:0906.5549.

[12] A. V. Isaev and M. A. Mishchenko, Classification of spherical tube hypersurfaces that have one minus in the Levi signature form, Math. USSR-Izv. 33 (1989), 441–472. | MR 984213 | Zbl 0677.32003

[13] A. V. Isaev, Classification of spherical tube hypersurfaces that have two minuses in the Levi signature form, Math. Notes 46 (1989), 517–523. | MR 1019254 | Zbl 0725.32001

[14] A. V. Isaev, Global properties of spherical tube hypersurfaces, Indiana Univ. Math. J. 42 (1993), 179–213. | MR 1218712 | Zbl 0797.32014

[15] A. V. Isaev and W. Kaup, Regularization of local CR-automorphisms of real-analytic CR-manifolds, J. Geom. Anal. (2011), to appear. | MR 2868965 | Zbl 1261.32005

[16] W. Kaup, On the holomorphic structure of G-orbits in compact hermitian symmetric spaces, Math. Z. 249 (2005), 797–816. | MR 2126217 | Zbl 1136.32007

[17] W. Kaup, CR-quadrics with a symmetry property, Manuscripta Math. 133 (2010), 505–517. | MR 2729265 | Zbl 1202.32032

[18] W. Kaup and D. Zaitsev, On local CR-transformations of Levi degenerate group orbits in compact Hermitian symmetric spaces, J. Eur. Math. Soc. 8 (2006), 465–490. | MR 2250168 | Zbl 1118.32019

[19] R. S. Palais, “A Global Formulation of the Lie Theory of Transformation Groups”, Mem. Amer. Math. Soc. 1957. | MR 121424 | Zbl 0178.26502

[20] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan 14 (1962), 397–429. | MR 145555 | Zbl 0113.06303

[21] D. Zaitsev, On different notions of homogeneity for CR-manifolds, Asian J. Math. 11 (2007), 331–340. | MR 2328898 | Zbl 1138.32018