Exchanging the order of taking suprema and countable intersections of σ-algebras
Annales de l'I.H.P. Probabilités et statistiques, Volume 19 (1983) no. 1, p. 91-100
@article{AIHPB_1983__19_1_91_0,
     author = {Weizs\"acker, Heinrich V.},
     title = {Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {19},
     number = {1},
     year = {1983},
     pages = {91-100},
     zbl = {0509.60002},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_1983__19_1_91_0}
}
Weizsäcker, Heinrich V. Exchanging the order of taking suprema and countable intersections of $\sigma $-algebras. Annales de l'I.H.P. Probabilités et statistiques, Volume 19 (1983) no. 1, pp. 91-100. http://www.numdam.org/item/AIHPB_1983__19_1_91_0/

[1] S. Albeverio and R. Høegh-Krohn, The global Markov property for euclidean and lattice fields. Physics letters, t. 84 B, 1979, p. 89-90. | MR 533849

[2] H. Föllmer, On the global Markov property, L. Streit (ed.): Quantum fields-algebras, -processes Springer: Wien, 1980. | MR 601817 | Zbl 0457.60077

[3] S. Goldstein, Remarks on the Global Markov Property. Comm. math. Phys., t. 74, 1980, p. 223-234. | MR 578041 | Zbl 0429.60097

[4] K. Ito and M. Nisio, On stationary solutions of a stochastic differential equation. J. Math., Kyoto Univ., t. 4, 1964, p. 1-75. | MR 177456 | Zbl 0131.16402

[5] G. Kallianpur and V. Mandrekhar, The Markov property for generalized Gaussian random fields. Ann. Inst. Fourier (Grenoble), t. 24, 1974, p. 143-167. | Numdam | MR 405569 | Zbl 0275.60054

[6] R. Kotecky and D. Preiss, Markoff property of generalized random fields. 7th Winter School on Abstract Analysis. Math. Inst. of the Cz. Acad. of Sciences, Praha, 1979.

[7] H. Künsch, Gaussian Markov random fields. J. of the Fac. of Sciences. Univ. of Tokyo, Sec. IA, t. 26, 1979, p. 53-73. | MR 539773 | Zbl 0408.60038

[8] D. Maharam, An example on tail fields. In: Measure Theory, Applications to Stochastic Analysis (G. Kallianpur and D. Kölzow, eds.). Lecture Notes in Math., 695, Springer, Berlin, etc., 1978, p. 215. | MR 527090 | Zbl 0401.60002

[9] P.A. Meyer et M. Yor, Sur la théorie de la prédiction, et le problème de décomposition des tribus F0t+. Sém. de Probabilités X. Lecture Notes in Math., 511, Springer, Berlin, etc., 1976. | Numdam | Zbl 0332.60025

[10] E. Nelson, Probability theory and Euclidean field theory in G. Velo, A. Wightman (eds.). Lecture Notes in Physics, 25, Springer, Berlin, etc., 1973. | MR 395513 | Zbl 0367.60108

[11] D. Ornstein and B. Weiss, Every transformation is bilaterally deterministic. Isr. J. of Math., t. 21, 1975, p. 154-158. | MR 382600 | Zbl 0325.28016

[12] M. Rosenblatt, Stationary processes as shifts of functions of independent random variables. J. Math. Mech., t. 8, 1959, p. 665-681. | MR 114249 | Zbl 0092.33601

[13] B.S. Tsirel'Son, An example of a stochastic differential equation having no strong solution. Theory of probability and its applications, t. 20, 1975, p. 416-418. | Zbl 0353.60061

[14] V. H. Weizsäcker, A simple example concerning the global Markov Property of lattice random fields. 8th Winter School on Abstract Analysis. Math. Inst. of the Cz. Acad of Sciences, Praha, 1980.

[15] G. Winkler, The number of phases of inhomogeneous Markov fields with finite state space on N and Z and their behaviour at infinity. To appear in Math. Nachr. | MR 657885 | Zbl 0488.60100