@article{SEDP_1993-1994____A13_0, author = {Naboko, S.}, title = {On the singular spectrum of discrete {Schr\"odinger} operator}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:12}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1993-1994}, zbl = {0886.34073}, mrnumber = {1300908}, language = {en}, url = {http://www.numdam.org/item/SEDP_1993-1994____A13_0/} }
TY - JOUR AU - Naboko, S. TI - On the singular spectrum of discrete Schrödinger operator JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:12 PY - 1993-1994 DA - 1993-1994/// PB - Ecole Polytechnique, Centre de Mathématiques UR - http://www.numdam.org/item/SEDP_1993-1994____A13_0/ UR - https://zbmath.org/?q=an%3A0886.34073 UR - https://www.ams.org/mathscinet-getitem?mr=1300908 LA - en ID - SEDP_1993-1994____A13_0 ER -
Naboko, S. On the singular spectrum of discrete Schrödinger operator. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1993-1994), Exposé no. 12, 9 p. http://www.numdam.org/item/SEDP_1993-1994____A13_0/
[1] Perturbation theory for linear operator Springer-Verlag (1906). | Zbl 0148.12601
-[2] Perturbation of spectra of operators in Hilbert space Amer. Math. Soc. (1965). | MR 182883
-[3] Inverse problems in quantum scattering theory Springer-Verlag (1977). | MR 522847 | Zbl 0363.47006
and -[4] Fourier series, a modern introduction Springer-Verlag (1979). | Zbl 0424.42001
-[5] Some Jacobi matrices with decaying potential and dense point spectrum Comm. in Math. Phys. 87 (1982), 253-258. | MR 684102 | Zbl 0546.35048
-[6] Singular continous measures in scattering theory Comm. in Math Phys. 60 (1978), 13-36. | MR 484145 | Zbl 0451.47013
-[7] Trace class perturbations and the absence of absolutely continuous spectra Comm. in Math. Phys. 125 (1989), 113-126. | MR 1017742 | Zbl 0684.47010
and -[8] Methods of modern mathematical physics 4 (Analysis of operators) Acad. Press (1977). | MR 493422 | Zbl 0401.47001
and -[9] On bound states in the continum of N-body system and the virial theorem Ann. Phys. 71 (1972), 167-276. | MR 300574
-[10] Uniqueness theorems for operator-valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model Arkiv for Matem. 23:1 (1987), 115-140. | MR 918381 | Zbl 0632.47012
-[11] Discrete Schrödinger operator, point spectrum on a continuous one Algebra and Analysis 4:3 (1992), 183-195 (in Russian). | MR 1190777 | Zbl 0828.39005
and -[12] Introduction to the theory of linear nonselfadjoint operators in Hilbert space Amer. Math. Soc. Providence R. I. (1969). | MR 246142 | Zbl 0181.13504
and -[13] On the singular spectrum of weakly perturbed operator of multiplication, Funk. Anal. i Priloz 4:2 (1970), 54-61 (in Russian) ; English. transl. in Functional Anal. Appl. 4 (1970). | MR 265983 | Zbl 0206.43801
and -[14] On Friedrichs model in continuous spectrum perturbation theory Trudy Math. Inst. Acad. of Sci. USSR 73 (1964) 292-313 (in Russian) ; English transl. in Amer. Math. Soc. Transl. 62 (1967). | MR 178362 | Zbl 0148.12801
-[15] Zero sets of operator-functions with positive imaginary part Lecture Notes in Math. Springer-Verlag, 1043 (1984) 124-128.
and -[16] Subharmonicfunctions 1, Acad. Press (1976).
and -[17] Spectral analysis of selfadjoint operators in Friedrichs model S.-Petersburg Univ. Depart. Math. Phys. Thesis (1991).
-[18] Nonselfadjoint difference operator, Dokl. Acad. Sci. USSR, 173:6 (1967), 1260-1263 (in Russian). | MR 211028
-[19] The boundary of finiteness of the singular spectrum in the selfadjoint Friedrichs model, Algebra and Analysis, 3:2 (1991) (in Russian) ; English transl. in St. Petersburg Math. J. 3:2 (1992) 299-311. | MR 1137522 | Zbl 0791.47001
, and -