On the asymptotic variance in the central limit theorem for particle filters
ESAIM: Probability and Statistics, Tome 16 (2012) , pp. 151-164.

Particle filter algorithms approximate a sequence of distributions by a sequence of empirical measures generated by a population of simulated particles. In the context of Hidden Markov Models (HMM), they provide approximations of the distribution of optimal filters associated to these models. For a given set of observations, the behaviour of particle filters, as the number of particles tends to infinity, is asymptotically Gaussian, and the asymptotic variance in the central limit theorem depends on the set of observations. In this paper we establish, under general assumptions on the hidden Markov model, the tightness of the sequence of asymptotic variances when considered as functions of the random observations as the number of observations tends to infinity. We discuss our assumptions on examples and provide numerical simulations.

DOI : https://doi.org/10.1051/ps/2010019
Classification : 60G35,  62M20,  60F05,  60J05
Mots clés : hidden Markov model, particle filter, central limit theorem, asymptotic variance, tightness, sequential Monte-Carlo
@article{PS_2012__16__151_0,
     author = {Favetto, Benjamin},
     title = {On the asymptotic variance in the central limit theorem for particle filters},
     journal = {ESAIM: Probability and Statistics},
     pages = {151--164},
     publisher = {EDP-Sciences},
     volume = {16},
     year = {2012},
     doi = {10.1051/ps/2010019},
     zbl = {1273.60046},
     mrnumber = {2946125},
     language = {en},
     url = {http://www.numdam.org/item/PS_2012__16__151_0/}
}
Favetto, Benjamin. On the asymptotic variance in the central limit theorem for particle filters. ESAIM: Probability and Statistics, Tome 16 (2012) , pp. 151-164. doi : 10.1051/ps/2010019. http://www.numdam.org/item/PS_2012__16__151_0/

[1] R. Atar and O. Zeitouni, Exponential stability for nonlinear filtering. Ann. Inst. Henri Poincaré 33 (1997) 697-725. | EuDML 77587 | Numdam | MR 1484538 | Zbl 0888.93057

[2] O. Cappé, E. Moulines and T. Ryden, Inference in Hidden Markov Models, in Springer Series in Statistics. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2005). | MR 2159833 | Zbl 1080.62065

[3] M. Chaleyat-Maurel and V. Genon-Catalot, Computable infinite-dimensional filters with applications to discretized diffusion processes. Stoc. Proc. Appl. 116 (2006) 1447-1467. | MR 2260743 | Zbl 1122.93079

[4] N. Chopin, Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32 (2004) 2385-2411. | MR 2153989 | Zbl 1079.65006

[5] E.B. Davies, Heat kernels and spectral theory, in Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge 92 (1989). | MR 990239 | Zbl 0699.35006

[6] P. Del Moral, Feynman-Kac formulae, Genealogical and interacting particle systems with applications. Probab. Appl. Springer-Verlag, New York (2004). | MR 2044973 | Zbl 1130.60003

[7] P. Del Moral and A. Guionnet, On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. Henri Poincaré 37 (2001) 155-194. | EuDML 77686 | Numdam | MR 1819122 | Zbl 0990.60005

[8] P. Del Moral and J. Jacod, Interacting particle filtering with discrete observations, in Sequential Monte Carlo methods in practice, Springer, New York. Stat. Eng. Inf. Sci. (2001) 43-75. | MR 1847786 | Zbl 1056.93574

[9] P. Del Moral and J. Jacod, Interacting particle filtering with discrete-time observations : asymptotic behaviour in the Gaussian case, in Stochastics in finite and infinite dimensions, Birkhäuser Boston, Boston, MA. Trends Math. (2001) 101-122. | MR 1797083 | Zbl 0982.60026

[10] R. Douc, A. Guillin and J. Najim, Moderate deviations for particle filtering. Ann. Appl. Probab. 15 (2005) 587-614. | MR 2114983 | Zbl 1072.60018

[11] R. Douc, G. Fort, E. Moulines and P. Priouret, Forgetting of the initial distribution for hidden Markov models. Stoc. Proc. Appl. 119 (2009) 1235-1256. | MR 2508572 | Zbl 1159.93357

[12] A. Doucet, N. De Freitas and N. Gordon, Sequential Monte Carlo methods in practice, Stat. Eng. Inform. Sci. Springer-Verlag, New York (2001). | MR 1847783 | Zbl 0967.00022

[13] H.R. Künsch, State space and hidden Markov models, in Complex Stochastic Systems. Eindhoven (1999); Chapman & Hall/CRC, Boca Raton, FL. Monogr. Statist. Appl. Probab. 87 (2001) 109-173. | MR 1893412 | Zbl 1002.62072

[14] H.R. Künsch, Recursive Monte Carlo filters : algorithms and theoretical analysis. Ann. Statist. 33 (2005) 1983-2021. | MR 2211077 | Zbl 1086.62106

[15] N. Oudjane and S. Rubenthaler, Stability and uniform particle approximation of nonlinear filters in case of non ergodic signals. Stoch. Anal. Appl. 23 (2005) 421-448. | MR 2140972 | Zbl 1140.93485

[16] C.P. Robert and G. Casella, Monte Carlo statistical methods, 2nd edition, in Springer Texts in Statistics. Springer-Verlag, New York (2004). | MR 2080278 | Zbl 0935.62005

[17] R. Van Handel, Uniform time average consistency of Monte Carlo particle filters. Stoc. Proc. Appl. 119 (2009) 3835-3861. | MR 2552307 | Zbl 1176.93076