On sait que les formes modulaires fausses classiques et les formes modulaires quantiques sont intimement liées aux intégrales de Mordell grâce à la thèse de doctorat révolutionnaire de Zwegers. Plus récemment, certaines généralisations des formes modulaires fausses/quantiques, appelées formes de profondeur supérieure (« higher depth »), ont été étudiées de manière intensive. En gros, une forme modulaire fausse/quantique de profondeur
Classical mock modular and quantum modular forms are known to have an intimate relationship with Mordell integrals thanks to Zwegers groundbreaking Ph.D. thesis. More recently, generalisations of mock/quantum modular forms to so-called “higher depth” versions have been intensively studied. In essence, a mock/quantum modular form of depth
Révisé le :
Accepté le :
Publié le :
Mots-clés : Quantum modular forms, higher Mordell integrals
@article{JTNB_2022__34_2_563_0, author = {Males, Joshua}, title = {A short note on higher {Mordell} integrals}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {563--573}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {2}, year = {2022}, doi = {10.5802/jtnb.1216}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1216/} }
TY - JOUR AU - Males, Joshua TI - A short note on higher Mordell integrals JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 563 EP - 573 VL - 34 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1216/ DO - 10.5802/jtnb.1216 LA - en ID - JTNB_2022__34_2_563_0 ER -
Males, Joshua. A short note on higher Mordell integrals. Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 2, pp. 563-573. doi : 10.5802/jtnb.1216. https://www.numdam.org/articles/10.5802/jtnb.1216/
[1] Indefinite theta series and generalized error functions, Sel. Math., New Ser., Volume 24 (2018) no. 5, pp. 3927-3972 | DOI | MR | Zbl
[2] Unimodal sequences and “strange” functions: a family of quantum modular forms, Pac. J. Math., Volume 274 (2015) no. 1, pp. 1-25 | DOI | MR | Zbl
[3] Higher depth quantum modular forms, multiple Eichler integrals, and
[4] Vector-valued higher depth quantum modular forms and higher Mordell integrals, J. Math. Anal. Appl., Volume 480 (2019) no. 2, 123397, 22 pages | MR | Zbl
[5] Half-integral weight Eichler integrals and quantum modular forms, J. Number Theory, Volume 161 (2016), pp. 240-254 | DOI | MR | Zbl
[6] Unimodal sequences and quantum and mock modular forms, Proc. Natl. Acad. Sci. USA, Volume 109 (2012) no. 40, pp. 16063-16067 | DOI | MR
[7] “Strange” combinatorial quantum modular forms, J. Number Theory, Volume 170 (2017), pp. 315-346 | DOI | MR | Zbl
[8] Torus knot and minimal model, Phys. Lett., B, Volume 575 (2003) no. 3, pp. 3-4 | MR | Zbl
[9] Torus knots and quantum modular forms, Res. Math. Sci., Volume 2 (2015) no. 1, 2, 15 pages | MR | Zbl
[10] Bemerkungen über die Darstellung von Reihen durch Integrale, J. Reine Angew. Math., Volume 105 (1889), pp. 157-159 | DOI | Zbl
[11] Summirung der Gausschen Reihen, J. Reine Angew. Math., Volume 105 (1889), pp. 267-268 | DOI | MR
[12] A family of vector-valued quantum modular forms of depth two, Int. J. Number Theory, Volume 16 (2020) no. 1, pp. 29-64 | DOI | MR | Zbl
[13] The value of the definite integral
[14] The definite integral
[15] et al. Unearthing the visions of a master: harmonic Maass forms and number theory, Current developments in mathematics, 2008, International Press, 2009, pp. 347-454 | Zbl
[16] A “strange” vector-valued quantum modular form, Arch. Math., Volume 101 (2013) no. 1, pp. 43-52 | DOI | MR | Zbl
[17] Über Riemanns Nachlass zur analytischen Zahlentheorie, Quell. Stud. Gesch. Math. B, Volume 2 (1932), pp. 45-80 | Zbl
[18] Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology, Volume 40 (2001) no. 5, pp. 945-960 | DOI | MR | Zbl
[19] Quantum modular forms, Quanta of maths (Clay Mathematics Proceedings), Volume 11, American Mathematical Society, 2010, pp. 659-675 | MR | Zbl
[20] Mock theta functions, Ph. D. Thesis, Universiteit Utrecht (The Netherland) (2002)
Cité par Sources :