A note on finite embedding problems with nilpotent kernel
Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 549-562.

The first aim of this note is to fill a gap in the literature by proving that, given a global field K and a finite set 𝒮 of primes of K, every finite split embedding problem GGal(L/K) over K with nilpotent kernel has a solution Gal(F/K)G such that all primes in 𝒮 are totally split in F/L. We then apply this to inverse Galois theory over division rings. Firstly, given a number field K of level at least 4, we show that every finite solvable group occurs as a Galois group over the division ring H K of quaternions with coefficients in K. Secondly, given a finite split embedding problem with nilpotent kernel over a finite field K, we fully describe for which automorphisms σ of K the embedding problem acquires a solution over the skew field of fractions K(T,σ) of the twisted polynomial ring K[T,σ].

Le premier objectif de cet article est de combler une lacune de la littérature en montrant que, si K est un corps global et si 𝒮 est un ensemble fini de places de K, alors tout problème de plongement fini scindé GGal(L/K) sur K à noyau nilpotent admet une solution Gal(F/K)G telle que toutes les places dans 𝒮 soient totalement décomposées dans F/L. Nous appliquons ensuite cela à la théorie inverse de Galois sur les corps non nécessairement commutatifs. Tout d’abord, étant donné un corps de nombres K de niveau au moins 4, nous montrons que tout groupe fini résoluble est groupe de Galois sur le corps des quaternions H K à coefficients dans K. Ensuite, étant donné un problème de plongement fini scindé à noyau nilpotent sur un corps fini K, nous décrivons complètement les automorphismes σ de K pour lesquels le problème de plongement admet une solution sur le corps de fractions K(T,σ) de l’anneau de polynômes K[T,σ].

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1215
Classification: 12F12, 12E30, 11R32, 12E15, 11R52
Keywords: Finite embedding problems, global fields, inverse Galois theory, division rings, quaternions
Fehm, Arno 1; Legrand, François 2

1 Institut für Algebra Fakultät Mathematik, TU Dresden 01062 Dresden, Germany
2 Normandie Univ., UNICAEN, CNRS Laboratoire de Mathématiques Nicolas Oresme 14000 Caen, France
@article{JTNB_2022__34_2_549_0,
     author = {Fehm, Arno and Legrand, Fran\c{c}ois},
     title = {A note on finite embedding problems with nilpotent kernel},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {549--562},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {34},
     number = {2},
     year = {2022},
     doi = {10.5802/jtnb.1215},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.1215/}
}
TY  - JOUR
AU  - Fehm, Arno
AU  - Legrand, François
TI  - A note on finite embedding problems with nilpotent kernel
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2022
SP  - 549
EP  - 562
VL  - 34
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.1215/
DO  - 10.5802/jtnb.1215
LA  - en
ID  - JTNB_2022__34_2_549_0
ER  - 
%0 Journal Article
%A Fehm, Arno
%A Legrand, François
%T A note on finite embedding problems with nilpotent kernel
%J Journal de théorie des nombres de Bordeaux
%D 2022
%P 549-562
%V 34
%N 2
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.1215/
%R 10.5802/jtnb.1215
%G en
%F JTNB_2022__34_2_549_0
Fehm, Arno; Legrand, François. A note on finite embedding problems with nilpotent kernel. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 549-562. doi : 10.5802/jtnb.1215. http://www.numdam.org/articles/10.5802/jtnb.1215/

[1] Alon, Gil; Legrand, François; Paran, Elad Galois groups over rational function fields over skew fields, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 7, pp. 785-790 | MR | Zbl

[2] Behajaina, Angelot Théorie inverse de Galois sur les corps de fractions rationnelles tordus, J. Pure Appl. Algebra, Volume 225 (2021) no. 4, 106549, 10 pages | MR | Zbl

[3] Behajaina, Angelot; Deschamps, Bruno; Legrand, François Problèmes de plongement finis sur les corps non commutatifs, Isr. J. Math., Volume 249 (2022) no. 2, pp. 617-650 | DOI | Zbl

[4] Checcoli, Sara; Fehm, Arno On the Northcott property and local degrees, Proc. Am. Math. Soc., Volume 149 (2021) no. 6, pp. 2403-2414 | DOI | MR | Zbl

[5] Cohn, Paul M. Skew fields. Theory of general division rings, Encyclopedia of Mathematics and Its Applications, 57, Cambridge University Press, 1995 | DOI

[6] Deschamps, Bruno La méthode Behajaina appliquée aux corps de fractions tordus par une dérivation, Res. Number Theory, Volume 7 (2021) no. 2, 39, 11 pages | MR | Zbl

[7] Deschamps, Bruno; Legrand, François Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale, J. Pure Appl. Algebra, Volume 224 (2020) no. 5, 106240, 13 pages | Zbl

[8] Fried, Michael D.; Jarden, Moshe Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 11, Springer, 2008

[9] Gille, Philippe; Szamuely, Tamás Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, 165, Cambridge University Press, 2017 | DOI

[10] Goodearl, Kenneth R.; Warfield, R. B. Jr An Introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, 61, Cambridge University Press, 2004 | DOI

[11] Hasse, Helmut Number theory, Grundlehren der Mathematischen Wissenschaften, 229, Springer, 1980 | DOI

[12] Jarden, Moshe Intersections of local algebraic extensions of a Hilbertian field, Generators and relations in groups and geometries (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 333, Kluwer Academic Publishers, 1991, pp. 343-405 | DOI | MR | Zbl

[13] Jarden, Moshe; Ramiharimanana, Nantsoina Cynthia Solving embedding problems with bounded ramification, Proc. Lond. Math. Soc., Volume 117 (2018) no. 1, pp. 149-191 | DOI | MR | Zbl

[14] Jarden, Moshe; Ramiharimanana, Nantsoina Cynthia Embedding problems with bounded ramification over global fields of positive characteristic, J. Lond. Math. Soc., Volume 100 (2019) no. 1, pp. 323-340 | DOI | MR | Zbl

[15] Klüners, Jürgen; Malle, Gunter Counting nilpotent Galois extensions, J. Reine Angew. Math., Volume 572 (2004), pp. 1-26 | DOI | MR | Zbl

[16] Lam, Tsit-Yuen Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, American Mathematical Society, 2005

[17] Lang, Serge Algebra, Graduate Texts in Mathematics, 211, Springer, 2002 | DOI

[18] Legrand, François On finite embedding problems with abelian kernels, J. Algebra, Volume 595 (2022), pp. 633-659 | DOI | MR | Zbl

[19] Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008 | DOI

[20] Ore, Øystein Theory of non-commutative polynomials, Ann. Math., Volume 34 (1933), pp. 480-508 | MR | Zbl

[21] Pop, Florian Embedding problems over large fields, Ann. Math., Volume 144 (1996) no. 1, pp. 1-34 | MR | Zbl

[22] Serre, Jean-Pierre Topics in Galois Theory, Research Notes in Mathematics, 1, Jones and Bartlett Publishers, 1992

Cited by Sources: