Le premier objectif de cet article est de combler une lacune de la littérature en montrant que, si
The first aim of this note is to fill a gap in the literature by proving that, given a global field
Révisé le :
Accepté le :
Publié le :
Mots-clés : Finite embedding problems, global fields, inverse Galois theory, division rings, quaternions
@article{JTNB_2022__34_2_549_0, author = {Fehm, Arno and Legrand, Fran\c{c}ois}, title = {A note on finite embedding problems with nilpotent kernel}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {549--562}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {2}, year = {2022}, doi = {10.5802/jtnb.1215}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.1215/} }
TY - JOUR AU - Fehm, Arno AU - Legrand, François TI - A note on finite embedding problems with nilpotent kernel JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 549 EP - 562 VL - 34 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.1215/ DO - 10.5802/jtnb.1215 LA - en ID - JTNB_2022__34_2_549_0 ER -
%0 Journal Article %A Fehm, Arno %A Legrand, François %T A note on finite embedding problems with nilpotent kernel %J Journal de théorie des nombres de Bordeaux %D 2022 %P 549-562 %V 34 %N 2 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.1215/ %R 10.5802/jtnb.1215 %G en %F JTNB_2022__34_2_549_0
Fehm, Arno; Legrand, François. A note on finite embedding problems with nilpotent kernel. Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 2, pp. 549-562. doi : 10.5802/jtnb.1215. https://www.numdam.org/articles/10.5802/jtnb.1215/
[1] Galois groups over rational function fields over skew fields, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 7, pp. 785-790 | MR | Zbl
[2] Théorie inverse de Galois sur les corps de fractions rationnelles tordus, J. Pure Appl. Algebra, Volume 225 (2021) no. 4, 106549, 10 pages | MR | Zbl
[3] Problèmes de plongement finis sur les corps non commutatifs, Isr. J. Math., Volume 249 (2022) no. 2, pp. 617-650 | DOI | Zbl
[4] On the Northcott property and local degrees, Proc. Am. Math. Soc., Volume 149 (2021) no. 6, pp. 2403-2414 | DOI | MR | Zbl
[5] Skew fields. Theory of general division rings, Encyclopedia of Mathematics and Its Applications, 57, Cambridge University Press, 1995 | DOI
[6] La méthode Behajaina appliquée aux corps de fractions tordus par une dérivation, Res. Number Theory, Volume 7 (2021) no. 2, 39, 11 pages | MR | Zbl
[7] Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale, J. Pure Appl. Algebra, Volume 224 (2020) no. 5, 106240, 13 pages | Zbl
[8] Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 11, Springer, 2008
[9] Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, 165, Cambridge University Press, 2017 | DOI
[10] An Introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, 61, Cambridge University Press, 2004 | DOI
[11] Number theory, Grundlehren der Mathematischen Wissenschaften, 229, Springer, 1980 | DOI
[12] Intersections of local algebraic extensions of a Hilbertian field, Generators and relations in groups and geometries (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 333, Kluwer Academic Publishers, 1991, pp. 343-405 | DOI | MR | Zbl
[13] Solving embedding problems with bounded ramification, Proc. Lond. Math. Soc., Volume 117 (2018) no. 1, pp. 149-191 | DOI | MR | Zbl
[14] Embedding problems with bounded ramification over global fields of positive characteristic, J. Lond. Math. Soc., Volume 100 (2019) no. 1, pp. 323-340 | DOI | MR | Zbl
[15] Counting nilpotent Galois extensions, J. Reine Angew. Math., Volume 572 (2004), pp. 1-26 | DOI | MR | Zbl
[16] Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, American Mathematical Society, 2005
[17] Algebra, Graduate Texts in Mathematics, 211, Springer, 2002 | DOI
[18] On finite embedding problems with abelian kernels, J. Algebra, Volume 595 (2022), pp. 633-659 | DOI | MR | Zbl
[19] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008 | DOI
[20] Theory of non-commutative polynomials, Ann. Math., Volume 34 (1933), pp. 480-508 | MR | Zbl
[21] Embedding problems over large fields, Ann. Math., Volume 144 (1996) no. 1, pp. 1-34 | MR | Zbl
[22] Topics in Galois Theory, Research Notes in Mathematics, 1, Jones and Bartlett Publishers, 1992
Cité par Sources :