The first aim of this note is to fill a gap in the literature by proving that, given a global field and a finite set of primes of , every finite split embedding problem over with nilpotent kernel has a solution such that all primes in are totally split in . We then apply this to inverse Galois theory over division rings. Firstly, given a number field of level at least , we show that every finite solvable group occurs as a Galois group over the division ring of quaternions with coefficients in . Secondly, given a finite split embedding problem with nilpotent kernel over a finite field , we fully describe for which automorphisms of the embedding problem acquires a solution over the skew field of fractions of the twisted polynomial ring .
Le premier objectif de cet article est de combler une lacune de la littérature en montrant que, si est un corps global et si est un ensemble fini de places de , alors tout problème de plongement fini scindé sur à noyau nilpotent admet une solution telle que toutes les places dans soient totalement décomposées dans . Nous appliquons ensuite cela à la théorie inverse de Galois sur les corps non nécessairement commutatifs. Tout d’abord, étant donné un corps de nombres de niveau au moins 4, nous montrons que tout groupe fini résoluble est groupe de Galois sur le corps des quaternions à coefficients dans . Ensuite, étant donné un problème de plongement fini scindé à noyau nilpotent sur un corps fini , nous décrivons complètement les automorphismes de pour lesquels le problème de plongement admet une solution sur le corps de fractions de l’anneau de polynômes .
Revised:
Accepted:
Published online:
Keywords: Finite embedding problems, global fields, inverse Galois theory, division rings, quaternions
@article{JTNB_2022__34_2_549_0, author = {Fehm, Arno and Legrand, Fran\c{c}ois}, title = {A note on finite embedding problems with nilpotent kernel}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {549--562}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {2}, year = {2022}, doi = {10.5802/jtnb.1215}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1215/} }
TY - JOUR AU - Fehm, Arno AU - Legrand, François TI - A note on finite embedding problems with nilpotent kernel JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 549 EP - 562 VL - 34 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1215/ DO - 10.5802/jtnb.1215 LA - en ID - JTNB_2022__34_2_549_0 ER -
%0 Journal Article %A Fehm, Arno %A Legrand, François %T A note on finite embedding problems with nilpotent kernel %J Journal de théorie des nombres de Bordeaux %D 2022 %P 549-562 %V 34 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1215/ %R 10.5802/jtnb.1215 %G en %F JTNB_2022__34_2_549_0
Fehm, Arno; Legrand, François. A note on finite embedding problems with nilpotent kernel. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 549-562. doi : 10.5802/jtnb.1215. http://www.numdam.org/articles/10.5802/jtnb.1215/
[1] Galois groups over rational function fields over skew fields, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 7, pp. 785-790 | MR | Zbl
[2] Théorie inverse de Galois sur les corps de fractions rationnelles tordus, J. Pure Appl. Algebra, Volume 225 (2021) no. 4, 106549, 10 pages | MR | Zbl
[3] Problèmes de plongement finis sur les corps non commutatifs, Isr. J. Math., Volume 249 (2022) no. 2, pp. 617-650 | DOI | Zbl
[4] On the Northcott property and local degrees, Proc. Am. Math. Soc., Volume 149 (2021) no. 6, pp. 2403-2414 | DOI | MR | Zbl
[5] Skew fields. Theory of general division rings, Encyclopedia of Mathematics and Its Applications, 57, Cambridge University Press, 1995 | DOI
[6] La méthode Behajaina appliquée aux corps de fractions tordus par une dérivation, Res. Number Theory, Volume 7 (2021) no. 2, 39, 11 pages | MR | Zbl
[7] Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale, J. Pure Appl. Algebra, Volume 224 (2020) no. 5, 106240, 13 pages | Zbl
[8] Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 11, Springer, 2008
[9] Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, 165, Cambridge University Press, 2017 | DOI
[10] An Introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, 61, Cambridge University Press, 2004 | DOI
[11] Number theory, Grundlehren der Mathematischen Wissenschaften, 229, Springer, 1980 | DOI
[12] Intersections of local algebraic extensions of a Hilbertian field, Generators and relations in groups and geometries (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 333, Kluwer Academic Publishers, 1991, pp. 343-405 | DOI | MR | Zbl
[13] Solving embedding problems with bounded ramification, Proc. Lond. Math. Soc., Volume 117 (2018) no. 1, pp. 149-191 | DOI | MR | Zbl
[14] Embedding problems with bounded ramification over global fields of positive characteristic, J. Lond. Math. Soc., Volume 100 (2019) no. 1, pp. 323-340 | DOI | MR | Zbl
[15] Counting nilpotent Galois extensions, J. Reine Angew. Math., Volume 572 (2004), pp. 1-26 | DOI | MR | Zbl
[16] Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, American Mathematical Society, 2005
[17] Algebra, Graduate Texts in Mathematics, 211, Springer, 2002 | DOI
[18] On finite embedding problems with abelian kernels, J. Algebra, Volume 595 (2022), pp. 633-659 | DOI | MR | Zbl
[19] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008 | DOI
[20] Theory of non-commutative polynomials, Ann. Math., Volume 34 (1933), pp. 480-508 | MR | Zbl
[21] Embedding problems over large fields, Ann. Math., Volume 144 (1996) no. 1, pp. 1-34 | MR | Zbl
[22] Topics in Galois Theory, Research Notes in Mathematics, 1, Jones and Bartlett Publishers, 1992
Cited by Sources: