Let be a hyperelliptic curve with an affine model of the form . We explicitly determine the root number of the Jacobian of , with particular focus on the local root number at where has wild ramification.
Soit une courbe hyperelliptique donnée par un modèle affine de la forme . Nous déterminons le signe de la Jacobienne de , en particulier nous nous concentrons sur le signe local en où est sauvagement ramifiée.
Revised:
Accepted:
Published online:
Keywords: Root numbers, hyperelliptic curves
@article{JTNB_2022__34_2_575_0, author = {Bisatt, Matthew}, title = {Root number of the {Jacobian} of $y^2=x^p+a$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {575--582}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {2}, year = {2022}, doi = {10.5802/jtnb.1217}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1217/} }
TY - JOUR AU - Bisatt, Matthew TI - Root number of the Jacobian of $y^2=x^p+a$ JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 575 EP - 582 VL - 34 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1217/ DO - 10.5802/jtnb.1217 LA - en ID - JTNB_2022__34_2_575_0 ER -
%0 Journal Article %A Bisatt, Matthew %T Root number of the Jacobian of $y^2=x^p+a$ %J Journal de théorie des nombres de Bordeaux %D 2022 %P 575-582 %V 34 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1217/ %R 10.5802/jtnb.1217 %G en %F JTNB_2022__34_2_575_0
Bisatt, Matthew. Root number of the Jacobian of $y^2=x^p+a$. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 575-582. doi : 10.5802/jtnb.1217. http://www.numdam.org/articles/10.5802/jtnb.1217/
[1] A user’s guide to the local arithmetic of hyperelliptic curves, Bull. Lond. Math. Soc., Volume 54 (2022) no. 3, pp. 825-867 | DOI | MR
[2] Explicit root numbers of abelian varieties, Trans. Am. Math. Soc., Volume 372 (2019) no. 11, pp. 7889-7920 | DOI | MR | Zbl
[3] Wild Galois representations: a family of hyperelliptic curves with large inertia image (2022) (https://arxiv.org/abs/2001.08287, to appear in Math. Proc. Camb. Philos. Soc.)
[4] Models of curves over discrete valuation rings, Duke Math. J., Volume 170 (2021) no. 11, pp. 2519-2574 | MR | Zbl
[5] Tate module and bad reduction, Proc. Am. Math. Soc., Volume 149 (2021) no. 4, pp. 1361-1372 | DOI | MR | Zbl
[6] The local root number of elliptic curves with wild ramification, Math. Ann., Volume 323 (2002) no. 3, pp. 609-623 | DOI | MR | Zbl
[7] Modèles minimaux des courbes de genre deux, J. Reine Angew. Math., Volume 453 (1994), pp. 137-164 | Zbl
[8] On local root numbers of abelian varieties, Ph. D. Thesis, Université de Strasbourg (France) (2021) (https://hal.archives-ouvertes.fr/tel-03258699v2)
[9] Root numbers of abelian varieties, Trans. Am. Math. Soc., Volume 359 (2007) no. 9, pp. 4259-4284 | DOI | MR | Zbl
[10] Local fields, Graduate Texts in Mathematics, 67, Springer, 1979 | DOI | Numdam
[11] Number theoretic background, Automorphic Forms, Representations and L-Functions (Proceedings of Symposia in Pure Mathematics), Volume 33-2, American Mathematical Society, 1979, pp. 3-26 | DOI | Zbl
Cited by Sources: