Root number of the Jacobian of y 2 =x p +a
Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 575-582.

Let C/ be a hyperelliptic curve with an affine model of the form y 2 =x p +a. We explicitly determine the root number of the Jacobian of C, with particular focus on the local root number at p where C has wild ramification.

Soit C/ une courbe hyperelliptique donnée par un modèle affine de la forme y 2 =x p +a. Nous déterminons le signe de la Jacobienne de C, en particulier nous nous concentrons sur le signe local en p,C est sauvagement ramifiée.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1217
Classification: 11G20, 11G40
Keywords: Root numbers, hyperelliptic curves
Bisatt, Matthew 1

1 Fry Building University of Bristol Bristol, BS8 1UG, UK
@article{JTNB_2022__34_2_575_0,
     author = {Bisatt, Matthew},
     title = {Root number of the {Jacobian} of $y^2=x^p+a$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {575--582},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {34},
     number = {2},
     year = {2022},
     doi = {10.5802/jtnb.1217},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.1217/}
}
TY  - JOUR
AU  - Bisatt, Matthew
TI  - Root number of the Jacobian of $y^2=x^p+a$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2022
SP  - 575
EP  - 582
VL  - 34
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.1217/
DO  - 10.5802/jtnb.1217
LA  - en
ID  - JTNB_2022__34_2_575_0
ER  - 
%0 Journal Article
%A Bisatt, Matthew
%T Root number of the Jacobian of $y^2=x^p+a$
%J Journal de théorie des nombres de Bordeaux
%D 2022
%P 575-582
%V 34
%N 2
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.1217/
%R 10.5802/jtnb.1217
%G en
%F JTNB_2022__34_2_575_0
Bisatt, Matthew. Root number of the Jacobian of $y^2=x^p+a$. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 575-582. doi : 10.5802/jtnb.1217. http://www.numdam.org/articles/10.5802/jtnb.1217/

[1] Best, Alex J.; Betts, L. Alexander; Bisatt, Matthew; van Bommel, Raymond; Dokchitser, Vladimir; Faraggi, Omri; Kunzweiler, Sabrina; Maistret, Céline; Morgan, Adam; Muselli, Simone; Nowell, Sarah A user’s guide to the local arithmetic of hyperelliptic curves, Bull. Lond. Math. Soc., Volume 54 (2022) no. 3, pp. 825-867 | DOI | MR

[2] Bisatt, Matthew Explicit root numbers of abelian varieties, Trans. Am. Math. Soc., Volume 372 (2019) no. 11, pp. 7889-7920 | DOI | MR | Zbl

[3] Coppola, Nirvana Wild Galois representations: a family of hyperelliptic curves with large inertia image (2022) (https://arxiv.org/abs/2001.08287, to appear in Math. Proc. Camb. Philos. Soc.)

[4] Dokchitser, Tim Models of curves over discrete valuation rings, Duke Math. J., Volume 170 (2021) no. 11, pp. 2519-2574 | MR | Zbl

[5] Dokchitser, Tim; Dokchitser, Vladimir; Morgan, Adam Tate module and bad reduction, Proc. Am. Math. Soc., Volume 149 (2021) no. 4, pp. 1361-1372 | DOI | MR | Zbl

[6] Kobayashi, Shin-ichi The local root number of elliptic curves with wild ramification, Math. Ann., Volume 323 (2002) no. 3, pp. 609-623 | DOI | MR | Zbl

[7] Liu, Qing Modèles minimaux des courbes de genre deux, J. Reine Angew. Math., Volume 453 (1994), pp. 137-164 | Zbl

[8] Melninkas, Lukas On local root numbers of abelian varieties, Ph. D. Thesis, Université de Strasbourg (France) (2021) (https://hal.archives-ouvertes.fr/tel-03258699v2)

[9] Sabitova, Maria Root numbers of abelian varieties, Trans. Am. Math. Soc., Volume 359 (2007) no. 9, pp. 4259-4284 | DOI | MR | Zbl

[10] Serre, Jean-Pierre Local fields, Graduate Texts in Mathematics, 67, Springer, 1979 | DOI | Numdam

[11] Tate, John Number theoretic background, Automorphic Forms, Representations and L-Functions (Proceedings of Symposia in Pure Mathematics), Volume 33-2, American Mathematical Society, 1979, pp. 3-26 | DOI | Zbl

Cited by Sources: