Moduli Spaces of Shtukas over the Projective Line
Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 2, pp. 393-418.

On donne des équations explicites pour des espaces de modules de chtoucas de Drinfeld sur la droite projective avec structures de niveau Γ(N), Γ1(N) et Γ0(N), où N désigne un diviseur effectif sur 1. Si le degré du diviseur N est suffisamment grand, ces espaces de modules sont des surfaces relatives. On étudie certains invariants de l’espace de modules de chtoucas avec structures de niveau Γ0(N) pour plusieurs diviseurs de degré 4 sur 1.

We provide explicit equations for moduli spaces of Drinfeld shtukas over the projective line with Γ(N), Γ1(N) and Γ0(N) level structures, where N is an effective divisor on 1. If the degree of N is high enough, these moduli spaces are relative surfaces. We study some invariants of the moduli space of shtukas with Γ0(N) level structure for several degree 4 divisors on 1.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1207
Classification : 11G09, 14H60, 11G18
Mots-clés : Drinfeld shtukas, moduli spaces, Kodaira types
de Frutos-Fernández, María Inés 1

1 Department of Mathematics Imperial College London South Kensington Campus, London SW7 2AZ, UK
@article{JTNB_2022__34_2_393_0,
     author = {de Frutos-Fern\'andez, Mar{\'\i}a In\'es},
     title = {Moduli {Spaces} of {Shtukas} over the {Projective} {Line}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {393--418},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {34},
     number = {2},
     year = {2022},
     doi = {10.5802/jtnb.1207},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/jtnb.1207/}
}
TY  - JOUR
AU  - de Frutos-Fernández, María Inés
TI  - Moduli Spaces of Shtukas over the Projective Line
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2022
SP  - 393
EP  - 418
VL  - 34
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://www.numdam.org/articles/10.5802/jtnb.1207/
DO  - 10.5802/jtnb.1207
LA  - en
ID  - JTNB_2022__34_2_393_0
ER  - 
%0 Journal Article
%A de Frutos-Fernández, María Inés
%T Moduli Spaces of Shtukas over the Projective Line
%J Journal de théorie des nombres de Bordeaux
%D 2022
%P 393-418
%V 34
%N 2
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.1207/
%R 10.5802/jtnb.1207
%G en
%F JTNB_2022__34_2_393_0
de Frutos-Fernández, María Inés. Moduli Spaces of Shtukas over the Projective Line. Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 2, pp. 393-418. doi : 10.5802/jtnb.1207. https://www.numdam.org/articles/10.5802/jtnb.1207/

[1] Artin, Michael; Swinnerton-Dyer, H. Peter F. The Shafarevich–Tate conjecture for pencils of elliptic curves on K3 surfaces, Invent. Math., Volume 20 (1973), pp. 249-266 | DOI | MR | Zbl

[2] Atiyah, Michael F. Vector bundles over an elliptic curve, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 414-452 | DOI | MR | Zbl

[3] Deligne, Pierre; Flicker, Yuval Z. Counting local systems with principal unipotent local monodromy, Ann. Math., Volume 178 (2013) no. 3, pp. 921-982 | DOI | MR | Zbl

[4] Drinfeld, Vladimir G. Proof of the global Langlands conjecture for GL(2) over a function field, Funkts. Anal. Prilozh., Volume 11 (1977), pp. 74-75

[5] Drinfeld, Vladimir G. Langlands’ conjecture for GL(2) over functional fields, Proceedings of the International Congress of Mathematicians, 1978, pp. 565-574

[6] Drinfeld, Vladimir G. Varieties of modules of F-sheaves, Funct. Anal. Appl., Volume 21 (1987) no. 1-3, pp. 107-122 | DOI

[7] Drinfeld, Vladimir G. Cohomology of compactified manifolds of modules of F-sheaves of rank 2, J. Math. Sci., New York, Volume 46 (1989), pp. 1789-1821 | DOI

[8] Elkies, Noam D. Elliptic K3 surfaces with a 6–torsion section (2019) (available at http://people.math.harvard.edu/~elkies/6t.pdf)

[9] Friedman, Robert Algebraic Surfaces and Holomorphic Vector Bundles, Universitext, Springer, 1998 | DOI

[10] de Frutos-Fernández, María I. Modularity of elliptic curves defined over function fields, Ph. D. Thesis, Boston University (USA) (2020) (available at https://hdl.handle.net/2144/41489)

[11] Hartshorne, Robin Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI

[12] Kodaira, Kunihiko On compact analytic surfaces I, Ann. Math., Volume 71 (1960), pp. 111-152 | DOI | MR | Zbl

[13] Kodaira, Kunihiko On compact analytic surfaces II, Ann. Math., Volume 77 (1963), pp. 563-626 | DOI | Zbl

[14] Kodaira, Kunihiko On compact analytic surfaces III, Ann. Math., Volume 78 (1963), pp. 1-40 | DOI | MR | Zbl

[15] Lafforgue, Laurent Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math., Volume 147 (2002), pp. 1-241 | DOI | MR | Zbl

[16] Néron, André Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math., Inst. Hautes Étud. Sci., Volume 21 (1964), pp. 361-484 | Numdam | Zbl

[17] Schütt, Matthias; Shioda, Tetsuji Elliptic surfaces, Algebraic geometry in East Asia – Seoul 2008 (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2008, pp. 51-160 | Zbl

[18] Szydlo, Michael Elliptic fibers over non–perfect residue fields, J. Number Theory, Volume 104 (2004), pp. 75-99 | DOI | MR | Zbl

[19] Tuan, Ngo Dac Introduction to the stacks of shtukas, Algebraic cycles, sheaves, shtukas, and moduli. Impanga lecture notes (Trends in Mathematics), Birkhäuser, 2008, pp. 217-236 | DOI | MR | Zbl

Cité par Sources :