We provide explicit equations for moduli spaces of Drinfeld shtukas over the projective line with , and level structures, where is an effective divisor on . If the degree of is high enough, these moduli spaces are relative surfaces. We study some invariants of the moduli space of shtukas with level structure for several degree divisors on .
On donne des équations explicites pour des espaces de modules de chtoucas de Drinfeld sur la droite projective avec structures de niveau , et , où désigne un diviseur effectif sur . Si le degré du diviseur est suffisamment grand, ces espaces de modules sont des surfaces relatives. On étudie certains invariants de l’espace de modules de chtoucas avec structures de niveau pour plusieurs diviseurs de degré sur .
Revised:
Accepted:
Published online:
Keywords: Drinfeld shtukas, moduli spaces, Kodaira types
@article{JTNB_2022__34_2_393_0, author = {de Frutos-Fern\'andez, Mar{\'\i}a In\'es}, title = {Moduli {Spaces} of {Shtukas} over the {Projective} {Line}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {393--418}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {2}, year = {2022}, doi = {10.5802/jtnb.1207}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1207/} }
TY - JOUR AU - de Frutos-Fernández, María Inés TI - Moduli Spaces of Shtukas over the Projective Line JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 393 EP - 418 VL - 34 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1207/ DO - 10.5802/jtnb.1207 LA - en ID - JTNB_2022__34_2_393_0 ER -
%0 Journal Article %A de Frutos-Fernández, María Inés %T Moduli Spaces of Shtukas over the Projective Line %J Journal de théorie des nombres de Bordeaux %D 2022 %P 393-418 %V 34 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1207/ %R 10.5802/jtnb.1207 %G en %F JTNB_2022__34_2_393_0
de Frutos-Fernández, María Inés. Moduli Spaces of Shtukas over the Projective Line. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 2, pp. 393-418. doi : 10.5802/jtnb.1207. http://www.numdam.org/articles/10.5802/jtnb.1207/
[1] The Shafarevich–Tate conjecture for pencils of elliptic curves on K3 surfaces, Invent. Math., Volume 20 (1973), pp. 249-266 | DOI | MR | Zbl
[2] Vector bundles over an elliptic curve, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 414-452 | DOI | MR | Zbl
[3] Counting local systems with principal unipotent local monodromy, Ann. Math., Volume 178 (2013) no. 3, pp. 921-982 | DOI | MR | Zbl
[4] Proof of the global Langlands conjecture for over a function field, Funkts. Anal. Prilozh., Volume 11 (1977), pp. 74-75
[5] Langlands’ conjecture for over functional fields, Proceedings of the International Congress of Mathematicians, 1978, pp. 565-574
[6] Varieties of modules of F-sheaves, Funct. Anal. Appl., Volume 21 (1987) no. 1-3, pp. 107-122 | DOI
[7] Cohomology of compactified manifolds of modules of F-sheaves of rank 2, J. Math. Sci., New York, Volume 46 (1989), pp. 1789-1821 | DOI
[8] Elliptic K3 surfaces with a 6–torsion section (2019) (available at http://people.math.harvard.edu/~elkies/6t.pdf)
[9] Algebraic Surfaces and Holomorphic Vector Bundles, Universitext, Springer, 1998 | DOI
[10] Modularity of elliptic curves defined over function fields, Ph. D. Thesis, Boston University (USA) (2020) (available at https://hdl.handle.net/2144/41489)
[11] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI
[12] On compact analytic surfaces I, Ann. Math., Volume 71 (1960), pp. 111-152 | DOI | MR | Zbl
[13] On compact analytic surfaces II, Ann. Math., Volume 77 (1963), pp. 563-626 | DOI | Zbl
[14] On compact analytic surfaces III, Ann. Math., Volume 78 (1963), pp. 1-40 | DOI | MR | Zbl
[15] Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math., Volume 147 (2002), pp. 1-241 | DOI | MR | Zbl
[16] Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math., Inst. Hautes Étud. Sci., Volume 21 (1964), pp. 361-484 | Numdam | Zbl
[17] Elliptic surfaces, Algebraic geometry in East Asia – Seoul 2008 (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2008, pp. 51-160 | Zbl
[18] Elliptic fibers over non–perfect residue fields, J. Number Theory, Volume 104 (2004), pp. 75-99 | DOI | MR | Zbl
[19] Introduction to the stacks of shtukas, Algebraic cycles, sheaves, shtukas, and moduli. Impanga lecture notes (Trends in Mathematics), Birkhäuser, 2008, pp. 217-236 | DOI | MR | Zbl
Cited by Sources: