Theory of functions
Polynomials with real zeros via special polynomials
Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 57-64.

In this paper, we use particular polynomials to establish some results on the real rootedness of polynomials. The considered polynomials are Bell polynomials and Hermite polynomials.

Dans ce papier, nous utilisons des polynômes particuliers pour établir quelques résultats sur les polynômes à racines réelles. Les polynômes considérés sont des polynômes de Bell et des polynômes de Hermite.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.147
Mihoubi, Miloud 1; Taharbouchet, Said 2

1 RECITS Laboratory, Faculty of Mathematics, USTHB, P.O. Box 32, El Alia 16111, Bab-Ezzouar, Algiers, Algeria
2 RECITS Laboratory, Faculty of Mathematics, USTHB, Po Box 32, El Alia 16111, Bab-Ezzouar, Algiers, Algeria
@article{CRMATH_2021__359_1_57_0,
     author = {Mihoubi, Miloud and Taharbouchet, Said},
     title = {Polynomials with real zeros via special polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {57--64},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {1},
     year = {2021},
     doi = {10.5802/crmath.147},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.147/}
}
TY  - JOUR
AU  - Mihoubi, Miloud
AU  - Taharbouchet, Said
TI  - Polynomials with real zeros via special polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 57
EP  - 64
VL  - 359
IS  - 1
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.147/
DO  - 10.5802/crmath.147
LA  - en
ID  - CRMATH_2021__359_1_57_0
ER  - 
%0 Journal Article
%A Mihoubi, Miloud
%A Taharbouchet, Said
%T Polynomials with real zeros via special polynomials
%J Comptes Rendus. Mathématique
%D 2021
%P 57-64
%V 359
%N 1
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.147/
%R 10.5802/crmath.147
%G en
%F CRMATH_2021__359_1_57_0
Mihoubi, Miloud; Taharbouchet, Said. Polynomials with real zeros via special polynomials. Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 57-64. doi : 10.5802/crmath.147. http://www.numdam.org/articles/10.5802/crmath.147/

[1] Benyattou, Abdelkader; Mihoubi, Miloud Curious congruences related to the Bell polynomials, Quaest. Math., Volume 41 (2018) no. 3, pp. 437-448 | DOI | MR | Zbl

[2] Benyattou, Abdelkader; Mihoubi, Miloud Real-rooted polynomials via generalized Bell umbra, Notes Number Theory Discrete Math., Volume 25 (2019) no. 2, pp. 136-144 | DOI

[3] Bóna, Miklós; Mező, István Real zeros and partitions without singleton blocks, Eur. J. Comb., Volume 51 (2016), pp. 500-510 | DOI | MR | Zbl

[4] Brenti, Francesco Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Jerusalem combinatorics ’93: an international conference in combinatorics, May 9-17, 1993, Jerusalem, Israel (Contemporary Mathematics), Volume 178, American Mathematical Society, 1994, pp. 71-89 | DOI | MR | Zbl

[5] Comtet, Louis Advanced Combinatorics.The art of finite and infinite expansions, Reidel Publishing Company, 1974 (Translated from the french by J.W. Nienhuys) | Zbl

[6] Dong, Fengming; Meng, Koh Khee; Teo, Kee Leong Chromatic polynomials and chromaticity of graphs, World Scientific, 2005 | Zbl

[7] Gessel, Ira M. Applications of the classical umbral calculus, Algebra Univers., Volume 49 (2003) no. 4, pp. 397-434 | DOI | MR | Zbl

[8] Maamra, Mohammed S.; Mihoubi, Miloud The (r 1 ,...,r p )-Bell polynomials, Integers, Volume 14 (2014), A34, 14 pages | Zbl

[9] Mihoubi, Miloud Bell polynomials and binomial type sequences, Discrete Math., Volume 308 (2008) no. 12, pp. 2450-2459 | DOI | MR | Zbl

[10] Mihoubi, Miloud; Maamra, Mohammed S. The (r 1 ,...,r p )-Stirling numbers of the second kind, Integers, Volume 12 (2012) no. 5, A35, pp. 1047-1059 | Zbl

[11] Mihoubi, Miloud; Taharbouchet, Said Some identities involving Appell polynomials, Quaest. Math., Volume 43 (2019) no. 2, pp. 203-212 | DOI | MR

[12] Roman, Steven The Umbral Calculus, Pure and Applied Mathematics, 111, Academic Press Inc., 1984 | MR | Zbl

[13] Stanley, Richard Peter Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. N.Y. Acad. Sci., Volume 576 (1989), pp. 500-534 | DOI | MR | Zbl

[14] Wang, Yi; Yeh, Yeong-Nan Polynomials with real zeros and Pólya frequency sequences, J. Comb. Theory, Volume 109 (2005) no. 1, pp. 63-74 | DOI | Zbl

Cited by Sources: