Combinatorics
Associated r-Dowling numbers and some relatives
Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 47-55.

In this paper, we introduce a new generalization of Bell numbers, the s-associated r-Dowling numbers by combining two investigational directions. Here, r distinguished elements have to be in distinct blocks, some elements are coloured according to a colouring rule, and the cardinality of certain blocks is bounded from below by s. Along with them, we define some relatives, the s-associated r-Dowling factorials and the s-associated r-Dowling–Lah numbers, when the underlying set is decomposed into cycles or ordered blocks. The study of these numbers is based on their combinatorial meaning, and the exponential generating functions of their sequences derived from the so-called r-compositional formula.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.145
Classification: 05A15, 05A18, 05A19, 11B73
Gyimesi, Eszter 1; Nyul, Gábor 1

1 Institute of Mathematics, University of Debrecen, H–4002 Debrecen P.O.Box 400, Hungary
@article{CRMATH_2021__359_1_47_0,
     author = {Gyimesi, Eszter and Nyul, G\'abor},
     title = {Associated $r${-Dowling} numbers and some relatives},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {47--55},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {1},
     year = {2021},
     doi = {10.5802/crmath.145},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.145/}
}
TY  - JOUR
AU  - Gyimesi, Eszter
AU  - Nyul, Gábor
TI  - Associated $r$-Dowling numbers and some relatives
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 47
EP  - 55
VL  - 359
IS  - 1
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.145/
DO  - 10.5802/crmath.145
LA  - en
ID  - CRMATH_2021__359_1_47_0
ER  - 
%0 Journal Article
%A Gyimesi, Eszter
%A Nyul, Gábor
%T Associated $r$-Dowling numbers and some relatives
%J Comptes Rendus. Mathématique
%D 2021
%P 47-55
%V 359
%N 1
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.145/
%R 10.5802/crmath.145
%G en
%F CRMATH_2021__359_1_47_0
Gyimesi, Eszter; Nyul, Gábor. Associated $r$-Dowling numbers and some relatives. Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 47-55. doi : 10.5802/crmath.145. http://www.numdam.org/articles/10.5802/crmath.145/

[1] Bényi, Beáta; Méndez, Miguel; Ramírez, José L.; Wakhare, Tanay Restricted r-Stirling numbers and their combinatorial applications, Appl. Math. Comput., Volume 348 (2019), pp. 186-205 | MR | Zbl

[2] Bóna, Miklós; Mező, István Real zeros and partitions without singleton blocks, Eur. J. Comb., Volume 51 (2016), pp. 500-510 | DOI | MR | Zbl

[3] Caicedo, Jhon B.; Moll, Victor H.; Ramírez, José L.; Villamizar, Diego Extensions of set partitions and permutations, Electron. J. Comb., Volume 26 (2019) no. 2, P2.20 | MR | Zbl

[4] Carlitz, Leonard Weighted Stirling numbers of the first and second kind I, Fibonacci Q., Volume 18 (1980), pp. 147-162 | Zbl

[5] Cheon, Gi-Sang; Jung, Ji-Hwan r-Whitney numbers of Dowling lattices, Discrete Math., Volume 312 (2012) no. 15, pp. 2337-2348 | DOI | MR | Zbl

[6] Corcino, Cristina B.; Corcino, Roberto B.; Mező, I.; Ramírez, José L. Some polynomials associated with the r-Whitney numbers, Proc. Indian Acad. Sci., Math. Sci., Volume 128 (2018), 27 | MR | Zbl

[7] Corcino, Roberto B;; Corcino, Cristina B.; Aldema, Rodelito Asymptotic normality of the (r,β)-Stirling numbers, Ars Comb., Volume 81 (2006), pp. 81-96 | MR | Zbl

[8] Enneking, E. A.; Ahuja, J. C. Generalized Bell numbers, Fibonacci Q., Volume 14 (1976), pp. 67-73 | MR | Zbl

[9] Flajolet, Philippe; Sedgewick, Robert Analytic Combinatorics, Cambridge University Press, 2009 | Zbl

[10] Gyimesi, Eszter The r-Dowling–Lah polynomials (to appear in Mediterranean Journal of Mathematics)

[11] Gyimesi, Eszter; Nyul, Gábor A comprehensive study of r-Dowling polynomials, Aequationes Math., Volume 92 (2018) no. 3, pp. 515-527 | DOI | MR | Zbl

[12] Gyimesi, Eszter; Nyul, Gábor New combinatorial interpretations of r-Whitney and r-Whitney–Lah numbers, Discrete Appl. Math., Volume 255 (2019), pp. 222-233 | DOI | MR | Zbl

[13] Howard, Fredric T. Numbers generated by the reciprocal of e x -x-1, Math. Comput., Volume 31 (1977) no. 138, pp. 581-598 | MR | Zbl

[14] Howard, Fredric T. Associated Stirling numbers, Fibonacci Q., Volume 18 (1980), pp. 303-315 | MR | Zbl

[15] Howard, Fredric T. Weighted associated Stirling numbers, Fibonacci Q., Volume 22 (1984), pp. 156-165 | MR | Zbl

[16] Kereskényi-Balogh, Zsófia; Nyul, Gábor Stirling numbers of the second kind and Bell numbers for graphs, Australas. J. Comb., Volume 58 (2014), pp. 264-274 | MR | Zbl

[17] Mező, István The r-Bell numbers, J. Integer Seq., Volume 14 (2011) no. 1, 11.1.1 | MR | Zbl

[18] Mező, István; Nyul, Gábor The r-Fubini and r-Eulerian numbers (manuscript)

[19] Mező, István; Ramírez, José L.; Wang, Chen-Ying On generalized derangements and some orthogonal polynomials, Integers, Volume 19 (2019), A6 | MR | Zbl

[20] Moll, Victor Hugo; Ramírez, José L.; Villamizar, Diego Combinatorial and arithmetical properties of the restricted and associated Bell and factorial numbers, J. Comb., Volume 9 (2018) no. 4, pp. 693-720 | MR | Zbl

[21] Nyul, Gábor; Rácz, Gabriella Sums of r-Lah numbers and r-Lah polynomials, Ars Math. Contemp., Volume 18 (2020) no. 2, pp. 211-222 | DOI | MR

[22] Pólya, G.; Szegő, G. Problems and Theorems in Analysis. Vol. I: Series. Integral calculus. Theory of functions. Translation by D. Aeppli, Grundlehren der mathematischen Wissenschaften, 193, Springer, 1972 | Zbl

[23] Stanley, Richard P. Acyclic orientations of graphs, Discrete Math., Volume 5 (1973), pp. 171-178 | DOI | MR | Zbl

[24] Wang, Chenying; Miska, Piotr; Mező, István The r-derangement numbers, Discrete Math., Volume 340 (2017), pp. 1681-1692 | DOI | MR | Zbl

[25] Wang, David G. L. On colored set partitions of type B n , Cent. Eur. J. Math., Volume 12 (2014) no. 9, pp. 1372-1381 | MR | Zbl

Cited by Sources: