We prove that there is a small but fixed positive integer such that for every prime larger than a fixed integer, every subset of the integers modulo which satisfies and is contained in an arithmetic progression of length . This is the first result of this nature which places no unnecessary restrictions on the size of .
Nous démontrons qu’il existe un entier strictement positif , petit mais fixé, tel que pour tout nombre premier plus grand qu’un entier fixé, tout sous-ensemble des entiers modulo qui vérifie et est contenu dans une progression arithmétique de longueur . Il s’agit du premier résultat de cette nature qui ne contraint pas inutilement le cardinal de .
Keywords: Sumset, arithmetic progression, additive combinatorics
Mot clés : somme de parties, progression arithmétique, combinatoire additive
@article{AIF_2009__59_5_2043_0, author = {Serra, Oriol and Z\'emor, Gilles}, title = {Large sets with small doubling modulo $p$ are well covered by an arithmetic progression}, journal = {Annales de l'Institut Fourier}, pages = {2043--2060}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {5}, year = {2009}, doi = {10.5802/aif.2482}, mrnumber = {2573196}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2482/} }
TY - JOUR AU - Serra, Oriol AU - Zémor, Gilles TI - Large sets with small doubling modulo $p$ are well covered by an arithmetic progression JO - Annales de l'Institut Fourier PY - 2009 SP - 2043 EP - 2060 VL - 59 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2482/ DO - 10.5802/aif.2482 LA - en ID - AIF_2009__59_5_2043_0 ER -
%0 Journal Article %A Serra, Oriol %A Zémor, Gilles %T Large sets with small doubling modulo $p$ are well covered by an arithmetic progression %J Annales de l'Institut Fourier %D 2009 %P 2043-2060 %V 59 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2482/ %R 10.5802/aif.2482 %G en %F AIF_2009__59_5_2043_0
Serra, Oriol; Zémor, Gilles. Large sets with small doubling modulo $p$ are well covered by an arithmetic progression. Annales de l'Institut Fourier, Volume 59 (2009) no. 5, pp. 2043-2060. doi : 10.5802/aif.2482. http://www.numdam.org/articles/10.5802/aif.2482/
[1] Rectification principles in additive number theory, Discrete Comput. Geom., Volume 19 (1998) no. 3, Special Issue, pp. 343-353 (Dedicated to the memory of Paul Erdős) | DOI | MR | Zbl
[2] The addition of finite sets. I, Izv. Vysš. Učebn. Zaved. Matematika, Volume 1959 (1959) no. 6 (13), pp. 202-213 | MR | Zbl
[3] Inverse problems in additive number theory. Addition of sets of residues modulo a prime, Dokl. Akad. Nauk SSSR, Volume 141 (1961), pp. 571-573 | MR | Zbl
[4] Foundations of a structural theory of set addition, American Mathematical Society, Providence, R. I., 1973 (Translated from the Russian, Translations of Mathematical Monographs, Vol 37) | MR | Zbl
[5] Sets with small sumset and rectification, Bull. London Math. Soc., Volume 38 (2006) no. 1, pp. 43-52 | DOI | MR | Zbl
[6] On the connectivity of Cayley digraphs, European J. Combin., Volume 5 (1984) no. 4, pp. 309-312 | MR | Zbl
[7] An isoperimetric method in additive theory, J. Algebra, Volume 179 (1996) no. 2, pp. 622-630 | DOI | MR | Zbl
[8] Subsets with small sums in abelian groups. I. The Vosper property, European J. Combin., Volume 18 (1997) no. 5, pp. 541-556 | DOI | MR | Zbl
[9] Some results in additive number theory. I. The critical pair theory, Acta Arith., Volume 96 (2000) no. 2, pp. 97-119 | DOI | MR | Zbl
[10] An inverse theorem mod , Acta Arith., Volume 92 (2000) no. 3, pp. 251-262 | Zbl
[11] On the critical pair theory in , Acta Arith., Volume 121 (2006) no. 2, pp. 99-115 | DOI | MR | Zbl
[12] On the critical pair theory in abelian groups: beyond Chowla’s theorem, Combinatorica, Volume 28 (2008) no. 4, pp. 441-467 | DOI | MR
[13] On addition of two distinct sets of integers, Acta Arith., Volume 70 (1995) no. 1, pp. 85-91 | MR | Zbl
[14] Additive number theory, Graduate Texts in Mathematics, 165, Springer-Verlag, New York, 1996 (Inverse problems and the geometry of sumsets) | MR | Zbl
[15] On Freiman’s 2.4-Theorem, Skr. K. Nor. Vidensk. Selsk. (2006) no. 4, pp. 11-18 | Zbl
[16] An application of graph theory to additive number theory, Sci. Ser. A Math. Sci. (N.S.), Volume 3 (1989), pp. 97-109 | MR | Zbl
[17] On a generalization of a theorem by Vosper, Integers (2000), pp. A10, 10 pp. (electronic) | MR | Zbl
[18] Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2006 | MR | Zbl
[19] The critical pairs of subsets of a group of prime order, J. London Math. Soc., Volume 31 (1956), pp. 200-205 | DOI | MR | Zbl
Cited by Sources: