

ANNALES

DE

L'INSTITUT FOURIER

Oriol SERRA \& Gilles ZÉMOR
Large sets with small doubling modulo p are well covered by an arithmetic progression

Tome 59, n ${ }^{\circ} 5$ (2009), p. 2043-2060.
http://aif.cedram.org/item?id=AIF_2009__59_5_2043_0
© Association des Annales de l'institut Fourier, 2009, tous droits réservés.

L'accès aux articles de la revue «Annales de l'institut Fourier» (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

LARGE SETS WITH SMALL DOUBLING MODULO p ARE WELL COVERED BY AN ARITHMETIC PROGRESSION

by Oriol SERRA \& Gilles ZÉMOR (*)

Abstract

We prove that there is a small but fixed positive integer ϵ such that for every prime p larger than a fixed integer, every subset S of the integers modulo p which satisfies $|2 S| \leqslant(2+\epsilon)|S|$ and $2(|2 S|)-2|S|+3 \leqslant p$ is contained in an arithmetic progression of length $|2 S|-|S|+1$. This is the first result of this nature which places no unnecessary restrictions on the size of S.

Résumé. - Nous démontrons qu'il existe un entier strictement positif ϵ, petit mais fixé, tel que pour tout nombre premier p plus grand qu'un entier fixé, tout sous-ensemble S des entiers modulo p qui vérifie $|2 S| \leqslant(2+\epsilon)|S|$ et $2(|2 S|)-2|S|+$ $3 \leqslant p$ est contenu dans une progression arithmétique de longueur $|2 S|-|S|+1$. Il s'agit du premier résultat de cette nature qui ne contraint pas inutilement le cardinal de S.

1. Introduction

In 1959 Freiman [2] proved that if S is a set of integers such that

$$
|2 S| \leqslant 3|S|-4
$$

then S is contained in an arithmetic progression of length $|2 S|-|S|+1$.
This result is often known as Freiman's $(3 k-4)$-Theorem. It has been conjectured that the same result also holds in the finite groups $\mathbb{Z} / p \mathbb{Z}$ of prime order. Working towards this conjecture, Freiman [3] proved (see also [4] and Nathanson [14] for the following formulation of the result):

[^0]Theorem 1.1 (Freiman [3]). - Let $S \subset \mathbb{Z} / p \mathbb{Z}$ such that $3 \leqslant|S| \leqslant c_{0} p$ and

$$
|2 S| \leqslant c_{1}|S|-3,
$$

with $0<c_{0} \leqslant 1 / 12, c_{1}>2$ and $\left(2 c_{1}-3\right) / 3<\left(1-c_{0} c_{1}\right) / c_{1}^{1 / 2}$. Then S is contained in an arithmetic progression of length $|2 S|-|S|+1$.

The largest possible numerical value of c_{1} given by this theorem is $c_{1} \approx$ 2.45 , which falls somewhat short of the value predicted by the conjecture (namely 3). In addition, Theorem 1.1 only guarantees the result for sets S that are small enough. For example, to guarantee $c_{1}=2.4$, the theorem needs the assumption $|S| \leqslant p / 35$. This last assumption was improved to $|S| \leqslant p / 10.7$ by Rødseth [15] but without improving the value of the constant c_{1}.

It follows from a recent result of Green and Rusza [5] on rectification of sets with small doubling in $\mathbb{Z} / p \mathbb{Z}$ that the value of c_{1} can actually be pushed all the way to 3 while preserving the conclusion that S is contained in a short arithmetic progression, but this comes at the expense of a stringent condition on the size of S : namely the extra assumption $|S|<10^{-180} p$.

In the present paper, we shall work at the conjecture from a different direction. Rather than focusing on the best possible value for the constant c_{1}, we shall try to lift all restrictions on the size of S. First we need to formulate properly what should be the right version of Freiman's $(3 k-4)-$ Theorem in $\mathbb{Z} / p \mathbb{Z}$.

For $-1 \leqslant m \leqslant|S|-4$, we want the condition $|2 S|=2|S|+m$ to imply that S is included in an arithmetic progression of length $|S|+m+1$. One fact that has not been spelt out explicitly in the literature is that for such a result to hold, some lower bound on the size of the complement $\mathbb{Z} / p \mathbb{Z} \backslash 2 S$ of $2 S$ must be formulated. Indeed, if $p-|2 S|$ is too small, the conclusion will not hold even if m is small compared to $|S|-4$. Consider in particular the following example. Let $S=\{0\} \cup\{m+3, m+4, \ldots,(p+1) / 2\}$. We have $|2 S|=p-(m+1)=2|S|+m$, but straightforward counting shows that for fixed m and sufficiently large p any arithmetic progression of difference $d \neq 1$ that contains S must contain approximately $p / 2$ elements not in S, hence S is not included in an arithmetic progression of length $|S|+m+1$. For the desired result to hold, we must therefore add the condition $p-|2 S|>m+1$. We conjecture that this extra condition is sufficient for a $\mathbb{Z} / p \mathbb{Z}$-version of Freiman's $(3 k-4)$-Theorem to hold. More precisely:

Conjecture 1.2. - Let $S \subset \mathbb{Z} / p \mathbb{Z}$ and let $m=|2 S|-2|S|$. Suppose that m satisfies:

$$
-1 \leqslant m \leqslant \min \{|S|-4, p-|2 S|-3\} .
$$

Then S is included in an arithmetic progression of length $|S|+m+1$.
Note that $p-|2 S|=p-2|S|-m$ can not be equal to $m+2$, otherwise p would be an even number. Therefore the condition $m \leqslant p-|2 S|-3$ of the conjecture is equivalent to $p-|2 S|>m+1$ which is a necessary lower bound on $p-|2 S|$, as the example above shows.

We remark that the cases $m=-1,0,1$ of this conjecture are known. They are implied by Vosper's theorem [19] ($m=-1$), by a result of Hamidoune and Rødseth [10] $(m=0)$ and by a result of Hamidoune and the present authors [11] $(m=1)$. In the present paper we shall prove conjecture 1.2 for all values of m up to $\epsilon|S|$, where ϵ is a fixed absolute constant. More precisely, our main result is:

Theorem 1.3. - There exist positive numbers p_{0} and ϵ such that, for all primes $p>p_{0}$, any subset S of $\mathbb{Z} / p \mathbb{Z}$ such that
(i) $|2 S|<(2+\epsilon)|S|$,
(ii) $m=|2 S|-2|S|$ satisfies $m \leqslant \min \{|S|-4, p-|2 S|-3\}$, is included in an arithmetic progression of length $|S|+m+1$.

We shall prove this result with the numerical values $\epsilon=10^{-4}$ and $p_{0}=$ 2^{94}.

In the past, the dominant strategy, already present in Freiman's original proof of Theorem 1.1, has been to rectify the set S, i.e., find an argument that enables one to claim that the sum $S+S$ must behave as in \mathbb{Z}, and then apply Freiman's $(3 k-4)$-Theorem. Rectifying S directly however, becomes more and more difficult when the size of S grows, hence the different upper bounds on S that one regularly encounters in the literature. In our case, without any upper bound on S, rectifying S by studying its structure directly is a difficult challenge. Our method will be indirect. Our strategy is to use an auxiliary set A that minimizes the difference $|S+A|-|S|$ among all sets such that $|A| \geqslant m+3$ and $|S+A| \leqslant p-(m+3)$. The set A is called an $(m+3)$-atom of S and using such sets to derive properties of S is an instance of the isoperimetric (or atomic) method in additive number theory which was introduced by Hamidoune and developed in [6, 7, 8, 9, 17, 11, 12]. The point of introducing the set A is that we shall manage to prove that it is both significantly smaller than S and also has a small sumset $2 A$. This will enable us to show that first the sum $A+A$, and then the sum $S+A$,
must behave as in \mathbb{Z}. Finally we will use Lev and Smelianski's distinct set version [13] of Freiman's $(3 k-4)$-Theorem to conclude.

The paper is organised as follows. The next section will introduce k atoms and their properties that are relevant to our purposes. In Section 3 we will show how our method works proving Theorem 1.3 in the relatively easy case when m is an arbitrary constant or a slowly growing function of p (i.e., $\log p$). In Section 4 we will prove Theorem 1.3 in full when m is a linear function of $|S|$.

2. Atoms

Let S be a subset of $\mathbb{Z} / p \mathbb{Z}$ such that $0 \in S$. For a positive integer k, we shall say that S is k-separable if there exists $X \subset \mathbb{Z} / p \mathbb{Z}$ such that $|X| \geqslant k$ and $|X+S| \leqslant p-k$.

Suppose that S is k-separable. The k-th isoperimetric number of S is then defined by
$\kappa_{k}(S)=\min \{|X+S|-|X|,|\quad X \subset \mathbb{Z} / p \mathbb{Z},|X| \geqslant k$ and $| X+S \mid \leqslant p-k\}$.
For a k-separable set S, a subset X achieving the above minimum is called a k-fragment of S. A k-fragment with minimal cardinality is called a k-atom.

What makes k-atoms interesting objects is the following lemma:
Lemma 2.1 (The intersection property [7]). - Let S be a subset of $\mathbb{Z} / p \mathbb{Z}$ such that $0 \in S$, and suppose S is k-separable. Let A be a k-atom of S. Let F be a k-fragment of S such that $A \not \subset F$. Then $|A \cap F| \leqslant k-1$.

The following Lemma follows from [9, Theorem 6.1], see also [12]:
Lemma 2.2. - Let $S \subset \mathbb{Z} / p \mathbb{Z}$ with $|S| \geqslant 3$ and $0 \in S$. Suppose S is 2 -separable and $\kappa_{2}(S) \leqslant|S|+m$. Let A be a 2 -atom of S. Then $|A| \leqslant m+3$.

Lemma 2.2 implies the following upper bound on the size of atoms.
Lemma 2.3. - Let $k \geqslant 3$ and let A be a k-atom of a k-separable set $S \subset \mathbb{Z} / p \mathbb{Z}$ with $0 \in S,|S| \geqslant 2$ and $\kappa_{k}(S) \leqslant|S|+m$. Then $|A| \leqslant 2 m+k+2$.

Proof. - The set A is clearly 2 -separable. Let B be a $2-$ atom of A with $0 \in B$, so that $|B+A| \leqslant|B|+|A|+m$. Let $b \in B, b \neq 0$. By Lemma 2.2 we have $|B| \leqslant m+3$. Therefore,

$$
\begin{equation*}
|A \cup(b+A)|=|\{0, b\}+A| \leqslant|B+A| \leqslant|A|+2 m+3 . \tag{2.2}
\end{equation*}
$$

But $b+A$ is also a k-atom of S. By the intersection property, it follows that $|A \cap(b+A)| \leqslant k-1$. Hence $2|A|-(k-1) \leqslant|A \cup(b+A)|$ which together with (2.2) gives the result.

From now on S will refer to a subset of $\mathbb{Z} / p \mathbb{Z}$ satisfying conditions (i) and (ii) of Theorem 1.3 for a fixed $\epsilon>0$ to be determined later, and m always denotes the integer $m=|2 S|-|S|$. Without loss of generality we will also assume $0 \in S$.

Note that condition (ii) implies that S is $(m+3)$-separable so that $(m+3)$-atoms of S exist. Note that by the definition of an atom, if X is an atom of S then so is $x+X$ for any $x \in \mathbb{Z} / p \mathbb{Z}$. Therefore there are atoms containing the zero element.

In the sequel A will denote an $(m+3)$-atom of S with $0 \in A$. We will regularly call upon the following two inequalities:

$$
\begin{equation*}
|S+A| \leqslant|S|+|A|+m \tag{2.3}
\end{equation*}
$$

which follows from the definition of an atom, and

$$
\begin{equation*}
|A| \leqslant 3 m+5 \tag{2.4}
\end{equation*}
$$

which follows from Lemma 2.3 with $k=m+3$.
The reader should also bear in mind that for all practical purposes, inequality (2.4) means that we will only be dealing with cases when $|A|$ is significantly smaller than $|S|$. Indeed, we shall prove Theorem 1.3 for a small value of ϵ, namely $\epsilon=10^{-4}$, so that 3 m is very much smaller than $|S|$. We can also freely assume that $|S| \geqslant p / 35$, since otherwise Freiman's Theorem 1.1 gives the result with $\epsilon=0.4$. The prime p will also be assumed to be larger than some fixed value p_{0} to be determined later.

3. The case $m \leqslant \log p$

In this section we will deal with the case when m is a very small quantity, i.e., smaller than a logarithmic function of p. This will allow us to introduce, without technical difficulties to hinder us, the general idea of the method which is to first show that A must be contained in a short arithmetic progression and then to transfer the structure of A to the larger set S. It will also serve the additional purpose of allowing us to suppose $m \geqslant 6$ when we switch to the looser condition $m \leqslant \epsilon|S|$.

We start by stating some results that we shall call upon. The first is a generalization of Freiman's Theorem in \mathbb{Z} to sums of different sets and is proved by Lev and Smelianski in [13], we give it here somewhat reworded (see also [14, Th. 4.8], or [18, Th. 5.12] for a slightly weaker version).

Theorem 3.1 (Lev and Smelianski [13]). - Let X and Y be two nonempty finite sets of integers with

$$
|X+Y|=|X|+|Y|+\mu
$$

Assume that $\mu \leqslant \min \{|X|,|Y|\}-3$ and that one of the two sets X, Y has size at least $\mu+4$. Then X is contained in an arithmetic progression of length $|X|+\mu+1$ and Y is contained in an arithmetic progression of length $|Y|+\mu+1$.

The second result we shall use is due to Bilu, Lev and Ruzsa [1, Theorem 3.1] ${ }^{(1)}$ and gives a bound on the length of small sets in $\mathbb{Z} / p \mathbb{Z}$. By the length $\ell(X)$ of a set $X \subset \mathbb{Z} / p \mathbb{Z}$ we mean the length (cardinality) of the shortest arithmetic progression which contains X.

Theorem 3.2 (Bilu, Lev, Ruzsa [1]). - Let $X \subset \mathbb{Z} / p \mathbb{Z}$ with $|X| \leqslant$ $\log _{4} p$. Then $\ell(X)<p / 2$.

Theorem 3.2 will be used to show that, when m is small enough, then the atom A is contained in a short arithmetic progression.

Lemma 3.3. - Suppose that $6 m+11 \leqslant \log _{4} p$. Then A is contained in an arithmetic progression of length $2(|A|-1)$.

Proof. - Since we assume $|S| \geqslant p / 35$, it follows from (2.3) and (2.4) that A is an $(m+4)$-separable set. Let therefore B be an $(m+4)$-atom of A containing 0 , so that $|B+A| \leqslant|B|+|A|+m$. By Lemma 2.3 we have $|B| \leqslant 3 m+6$ so that $|A \cup B| \leqslant 6 m+11$. By the present lemma's hypothesis, it follows from Theorem 3.2 that $A \cup B$ is contained in an arithmetic progression of length less than $p / 2$. The sum $A+B$ can therefore be considered as a sum of integers, so that Theorem 3.1 applies and A is contained in an arithmetic progression of length $|A|+m+1 \leqslant 2|A|-2$.

We now proceed to deduce from Lemma 3.3 the structure of S. It will be convenient to introduce the following notation.

Recall that we denote by $\ell(X)$ the length of the smallest arithmetic progression containing X. By $\ell_{X}(Y)$ we shall denote the length of a smallest arithmetic progression of difference x containing Y, where x is the difference of a shortest arithmetic progression containing X.

The point of the above definition is that if we have $\ell_{A}(S)+\ell(A) \leqslant p$ then the sum $S+A$ can be considered as a sum in \mathbb{Z}, so that (2.3) and Theorem 3.1 applied to S and A imply Theorem 1.3. We summarize this point in the next Lemma for future reference.

[^1]Lemma 3.4. - If $\ell_{A}(S)+\ell(A) \leqslant p$ then Theorem 1.3 holds.
Whenever we will wish transfer the structure of A to S we will assume that $\ell_{A}(S)+\ell(A)>p$ and look for a contradiction. We can think of this hypothesis as S having no 'holes' of length $\ell(A)$. In the present case of very small m, the desired result on S follows with very little effort.

Lemma 3.5. - Suppose that $6 m+11 \leqslant \log _{4} p$. Then S is contained in an arithmetic progression of length $|S|+m+1$.

Proof. - By Lemma 3.3, A is contained in an arithmetic progression of difference r, that we can assume to equal $r=1$, and of length $2(|A|-1)$. In particular A has two consecutive elements. Without loss of generality we may replace A by a translate of A and assume that $\{0,1\} \subset A$. Let $S=S_{1} \cup \cdots \cup S_{k}$ be the decomposition of S into maximal arithmetic progressions of difference 1, so that

$$
|S+A| \geqslant|S|+k
$$

Because of (2.3) we have $k \leqslant|A|+m$. By Lemma 3.4 we can assume every maximal arithmetic progression in the complement of S to have length at most $\ell(A)$. Therefore,

$$
\ell_{A}(S)+\ell(A) \leqslant|S|+k \ell(A) \leqslant|S|+(|A|+m) 2(|A|-1)
$$

Now by (2.4) we get

$$
\ell_{A}(S)+\ell(A) \leqslant|S|+(4 m+5)(6 m+8)<|S|+\left(\log _{4} p\right)^{2}<\frac{p}{2}+\left(\log _{4} p\right)^{2}
$$

since $|S|<p / 2$. We have $\log _{4}^{2} p<p / 2$ for all p therefore we get $\ell_{A}(S)+$ $\ell(A)<p$, a contradiction.

4. The general case

4.1. Overview

When m grows we encounter two difficulties. First, Theorem 3.2 will not apply anymore to any set containing A, and we need an alternative method to argue that A is contained in a short arithmetic progression. Second, even if we do manage to prove that A is contained in a short arithmetic progression, we will not be able to deduce the structure of S from (2.3) by the simple technique of the preceding section.

We will now use an extra tool, namely the Plünecke-Ruzsa estimates for sumsets; see e.g. [16, 14].

Theorem 4.1 (Plünecke-Ruzsa [16]). - Let S and T be finite subsets of an abelian group with $|S+T| \leqslant c|S|$. There is a nonempty subset $S^{\prime} \subset S$ such that

$$
\left|S^{\prime}+j T\right| \leqslant c^{j}\left|S^{\prime}\right|
$$

The Plünecke-Ruzsa inequalities applied to S and A will give us that there exists a positive δ such that either A is contained in a progression of length $(2-\delta)(|A|-1)$ or $2 A$ is contained in an arithmetic progression of length $(2-\delta)(|2 A|-1)$ (Lemma 4.4). We will then proceed to transfer the structure of A or $2 A$ to S.

Again we shall use Lemma 3.4 to assume that S does not contain a "gap" of length $\ell(A)$ or $\ell(2 A)$. We define the density of a set $X \subset \mathbb{Z} / p \mathbb{Z}$ as $\rho(X)=(|X|-1) / \ell(X)$. If $\ell(A) \leqslant(2-\delta)(|A|-1)$ we will argue that the sum $S+A$ must have a density at least that of A and get a contradiction with the upper bound on $|S+A|$. The details will be given in Subsection 4.3.

We will not be quite done however, because we can not guarantee that $\ell(A) \leqslant(2-\delta)(|A|-1)$ holds. In that case we have to fall back on the condition $\ell(2 A) \leqslant(2-\delta)(|2 A|-1)$, meaning that it is the set $2 A$, rather than A, that has large enough density. In this case we have to work a little harder. We proceed in two steps: we first apply the Plünecke-Ruzsa inequalities again to show that there exists a large subset T of S such that $|T+2 A|$ is small. We then apply the density argument to show that T must be contained in an arithmetic progression with few missing elements. We then focus on the remaining elements of S, i.e., the set $S \backslash T$. We will again argue that if this set has a gap of length $\ell(A)$ the desired result holds and otherwise the density argument will give us that $S+A$ is too large. This analysis is detailed in Subsection 4.4 and will conclude our proof of Theorem 1.3.

4.2. Structure of A

Lemma 4.2. - Suppose $6 \leqslant m \leqslant \epsilon|S|$ with $\epsilon \leqslant 10^{-4}$. Then for any positive integer $k \leqslant 32$ we have

$$
|k A| \leqslant k(|A|+m)\left(1+\frac{5 k \epsilon}{2}\right)+1
$$

Proof. - Rewrite (2.3) as

$$
|S+A| \leqslant|S|+|A|+m=c|S|
$$

with $c=1+\frac{|A|+m}{|S|}$. By Theorem 4.1 (Plünecke-Ruzsa), for each k there is a subset $S^{\prime}=S^{\prime}(k)$ such that

$$
\begin{equation*}
\left|S^{\prime}+k A\right| \leqslant c^{k}\left|S^{\prime}\right| \tag{4.1}
\end{equation*}
$$

Apply (2.4) and $m \geqslant 6$ to get $|A| \leqslant 3 m+5 \leqslant 4 m$. Since $m \leqslant \epsilon|S|$ we obtain for the constant c just defined $c \leqslant 1+5 \epsilon$. We clearly have

$$
c^{k}\left|S^{\prime}\right| \leqslant c^{k}|S| \leqslant(1+5 \epsilon)^{k}|S|<2|S|<p
$$

for $k \leqslant 32$. Now apply the Cauchy-Davenport Theorem to $S^{\prime}+k A$ in (4.1) to obtain $\left|S^{\prime}\right|+|k A|-1 \leqslant c^{k}\left|S^{\prime}\right|$, from which

$$
\begin{equation*}
|k A| \leqslant\left(c^{k}-1\right)\left|S^{\prime}\right|+1 \leqslant\left(c^{k}-1\right)|S|+1 \tag{4.2}
\end{equation*}
$$

Numerical computations give that

$$
(1+x)^{k} \leqslant 1+k x+\frac{k^{2}}{2} x^{2}
$$

for any positive real number $x \leqslant 5 \cdot 10^{-4}$ and for $k \leqslant 32$. Hence, since $c=1+(|A|+m) /|S| \leqslant 1+5 \epsilon$, we can write, for $k \leqslant 32$,

$$
c^{k}=\left(1+\frac{|A|+m}{|S|}\right)^{k} \leqslant 1+k \frac{|A|+m}{|S|}+\frac{k^{2}}{2}\left(\frac{|A|+m}{|S|}\right)^{2} .
$$

Applied to (4.2) we get

$$
\begin{aligned}
|k A| & \leqslant k(|A|+m)+\frac{k^{2}}{2}\left(\frac{(|A|+m)^{2}}{|S|}\right)+1 \\
& \leqslant k(|A|+m)\left(1+\frac{k}{2} \frac{(|A|+m)}{|S|}\right)+1 \\
& \leqslant k(|A|+m)\left(1+\frac{5 k \epsilon}{2}\right)+1
\end{aligned}
$$

as claimed.
Lemma 4.3. - If $6 \leqslant m \leqslant \epsilon|S|$ with $\epsilon \leqslant 10^{-4}$, then A and $2 A$ are contained in an arithmetic progression of length less than $p / 2$.

Proof. - Put $k=2^{j}$ and $c_{1}=2.44$. Suppose that $\left|2^{j} A\right| \geqslant c_{1}\left|2^{j-1} A\right|-3$ for each $1 \leqslant j \leqslant 5$. Then,

$$
|32 A| \geqslant c_{1}^{5}|A|-3\left(c_{1}^{5}-1\right) /\left(c_{1}-1\right) \geqslant 86|A|-179 \geqslant 65|A|+10
$$

where in the last inequality we have used $|A| \geqslant m+3 \geqslant 9$. On the other hand, by Lemma 4.2, we have

$$
\begin{equation*}
|k A| \leqslant k(|A|+m)\left(1+\frac{5 k \epsilon}{2}\right)+1 \leqslant 2 k\left(1+\frac{5 k \epsilon}{2}\right)|A|, \tag{4.3}
\end{equation*}
$$

which, for $k=32$, gives $|32 A| \leqslant 64(1+80 \epsilon)|A| \leqslant 65|A|$, a contradiction.
Hence $\left|2^{j} A\right| \leqslant c_{1}\left|2^{j-1} A\right|-3$ for some $1 \leqslant j \leqslant 5$. Since

$$
\left|2^{j-1} A\right| \leqslant|16 A| \leqslant 32(1+40 \epsilon)|A| \leqslant 64(1+40 \epsilon) \epsilon p<8 \cdot 10^{-3} p
$$

where again we have used inequality (4.3) for $k=16$ and $|A| \leqslant 4 m \leqslant$ $4 \epsilon|S| \leqslant 2 \epsilon p$. It follows from Freiman's Theorem 1.1 (with $c_{0}=8 \cdot 10^{-3}$ and $\left.c_{1}=2.44\right)$ that $A \subset 2^{j-1} A$ is contained in an arithmetic progression of length at most

$$
\left|2^{j} A\right|-\left|2^{j-1} A\right|+1<1.44\left|2^{j-1} A\right| \leqslant(1.44) 8 \cdot 10^{-3} p
$$

In particular, A and $2 A$ are included in arithmetic progressions of lengths less than $p / 2$.

Now that we know that A and $2 A$ are contained in an arithmetic progression of length smaller than $p / 2$, we can apply to them the Freiman's $(3 k-4)$-Theorem to get the following result.

Lemma 4.4. - Suppose $6 \leqslant m \leqslant \epsilon|S|$ with $\epsilon \leqslant 10^{-4}$, and let $0<$ $\delta \leqslant 10^{-1}$. If A is not contained in an arithmetic progression of length $(2-\delta)(|A|-1)$ then $2 A$ is contained in an arithmetic progression of length $(2-\delta)(|2 A|-1)$.

Proof. - Suppose first that $|2 A| \geqslant(3-\delta)(|A|-1)$ and $|4 A| \geqslant(3-$ $\delta)(|2 A|-1)$. Then

$$
\begin{equation*}
|4 A| \geqslant(3-\delta)^{2}|A|-(3-\delta)^{2}-(3-\delta) \geqslant(3-\delta)^{2}|A|-12 \tag{4.4}
\end{equation*}
$$

On the other hand, Lemma 4.2 for $k=4$ and $\epsilon=10^{-4}$ gives $|4 A| \leqslant$ $4(1+10 \epsilon)(|A|+m)+1$. By using (4.4) and $m \leqslant|A|-3$ we get

$$
(3-\delta)^{2}|A|-12 \leqslant 8(1+10 \epsilon)|A|-12(1+10 \epsilon)+1
$$

Since $m \geqslant 6$, we have $|A| \geqslant m+3 \geqslant 9$. Therefore we obtain

$$
(3-\delta)^{2}|A|<\left(8(1+10 \epsilon)+\frac{1}{9}\right)|A|
$$

a contradiction for $\delta \leqslant 0.1$.
Hence,
(a) either $|2 A|<(3-\delta)(|A|-1)<3|A|-3$, but since $\ell(A)<p / 2$ by Lemma 4.3, Freiman's $(3 k-4)$-Theorem applies and A is contained in an arithmetic progression of length $|2 A|-(|A|-1) \leqslant(2-\delta)(|A|-1)$.
(b) Or $|4 A|<(3-\delta)(|2 A|-1)<3|2 A|-3$, but using Lemma 4.3 again, Freiman's $(3 k-4)$-Theorem implies that $2 A$ is contained in an arithmetic progression of length $(2-\delta)(|2 A|-1)$.

4.3. Structure of S when $\ell(A)$ is small.

For a subset $B \subset \mathbb{Z} / p \mathbb{Z}$ define the density of B by

$$
\rho B=\frac{|B|-1}{\ell(B)} .
$$

The next lemma gives a lower bound for the cardinality of a sumset of two subsets $B, C \in \mathbb{Z} / p \mathbb{Z}$ when $\ell(B)+\ell(C)>p$ in terms of their densities. In the statement, by an interval $[a, b)$ in \mathbb{Z}_{p} we mean the set $\{a, a+1, \ldots, b-1\}$.

Lemma 4.5. - Let $0 \in C \subset \mathbb{Z} / p \mathbb{Z}$ with $C \subset[0, \ell(C))$ and $\ell(C)<p / 2$. Let $I_{1}, \ldots, I_{i}, \ldots, I_{2 t}$ be the sequence of intervals defined by $I_{i}=[(i-$ 1) $c, i c$), where $c=\ell(C)$ and $t<p / 2 c$. Let $B \subset \mathbb{Z} / p \mathbb{Z}$ such that for every $i=1, \ldots, 2 t$, we have $I_{i} \cap B \neq \emptyset$. Then,

$$
|B+C| \geqslant|B \cup[(B+C) \cap I]| \geqslant|B|+\left(t-\frac{1}{2}\right) \ell(C)\left(\rho C-\frac{|B \cap I|}{(2 t-1) c}\right)
$$

where $I=I_{1} \cup \ldots \cup I_{2 t}$.
Proof. - Let $B^{\prime}=B \cap I$. Let $B_{0}^{i}=B^{\prime} \cap I_{2 i-1}$ and $B_{1}^{i}=B^{\prime} \cap I_{2 i}$ and define $B_{0}^{\prime}=\bigcup_{i=1}^{t} B_{0}^{i}, B_{1}^{\prime}=\bigcup_{i=1}^{t} B_{1}^{i}$ so that $B^{\prime}=B_{0}^{\prime} \cup B_{1}^{\prime}$. Note that, since $C \subset[0, c)$,

$$
\left(B_{0}^{i}+C\right) \cap\left(B_{0}^{j}+C\right)=\emptyset
$$

for $i \neq j$ and that $B_{0}^{i}+C \subset I_{2 i-1} \cup I_{2 i}$. Therefore $B_{0}^{\prime}+C$ can be written as the following union of disjoint sets.

$$
B_{0}^{\prime}+C=\bigcup_{i=1}^{t}\left(B_{0}^{i}+C\right) \subset I_{1} \cup \ldots \cup I_{2 t}
$$

Hence, since every set B_{0}^{i} is nonempty, the Cauchy-Davenport Theorem implies

$$
\begin{equation*}
\left|B_{0}^{\prime}+C\right| \geqslant\left|B_{0}^{\prime}\right|+t(|C|-1) \tag{4.5}
\end{equation*}
$$

In a similar manner we have

$$
\begin{aligned}
\left(B_{1}^{\prime}+C\right) \cap I & =\bigcup_{i=1}^{t-1}\left(B_{1}^{i}+C\right) \cup\left(B_{1}^{2 t}+C\right) \cap I \\
& \supset \bigcup_{i=1}^{t-1}\left(B_{1}^{i}+C\right) \cup B_{1}^{2 t}
\end{aligned}
$$

so that, applying the Cauchy-Davenport Theorem for $i=1 \ldots t-1$, we get

$$
\begin{equation*}
\left|\left(B_{1}^{\prime}+C\right) \cap I\right| \geqslant\left|B_{1}^{\prime}\right|+(t-1)(|C|-1) . \tag{4.6}
\end{equation*}
$$

Now we have $|B+C| \geqslant\left|B \backslash B^{\prime}\right|+\left|\left(B_{0}^{\prime}+C\right) \cap I\right|$ and likewise $|B+C| \geqslant$ $\left|B \backslash B^{\prime}\right|+\left|\left(B_{1}^{\prime}+C\right) \cap I\right|$, hence, applying (4.5) and (4.6),

$$
\begin{aligned}
|B+C| & \geqslant\left|B \backslash B^{\prime}\right|+\frac{1}{2}\left(\left|\left(B_{0}^{\prime}+C\right) \cap I\right|+\left|\left(B_{1}^{\prime}+C\right) \cap I\right|\right) \\
& \geqslant|B|-\left|B^{\prime}\right| / 2+\left(t-\frac{1}{2}\right)(|C|-1) \\
& \geqslant|B|+\left(t-\frac{1}{2}\right) c\left(\rho C-\frac{\left|B^{\prime}\right|}{(2 t-1) c}\right)
\end{aligned}
$$

which proves the result.
Lemma 4.5 allows us to conclude the proof when the $(m+3)$-atom A is contained in a short arithmetic progression.

Lemma 4.6. - Suppose $6 \leqslant m \leqslant \epsilon|S|$ with $\epsilon \leqslant 10^{-4}$. Suppose furthermore that $\ell(A) \leqslant(2-\delta)(|A|-1)$. Then $\ell(S) \leqslant|S|+m+1$.

Proof. - Set $a=\ell(A)$. Write $p=2 t a+r, 0<r<2 a$ and partition [$0,2 t a$) into the union of intervals $I_{1}, \ldots, I_{i}, \ldots, I_{2 t}$, where we denote $I_{i}=$ $[(i-1) a, i a)$. Let $I=\cup_{i=1}^{2 t} I_{i}=[0,2 t a)$ and $S^{\prime}=S \cap I$.

Suppose that $\ell_{A}(S)+\ell(A)>p$. Then we have $I_{i} \cap S^{\prime} \neq \emptyset$ for each $i=1, \ldots 2 t$. By Lemma 4.5 with $B=S$ and $C=A$,

$$
\begin{equation*}
|S+A| \geqslant|S|+\left(t-\frac{1}{2}\right) a\left(\rho A-\frac{\left|S^{\prime}\right|}{(2 t-1) a}\right) \tag{4.7}
\end{equation*}
$$

Now we have $(2 t-1) a>p-3 a$ by definition of t. Since $|A| \leqslant 3 m+5$ we have $a=\ell(A) \leqslant 2(|A|-1) \leqslant 6 m+8$, and since we have supposed $m \geqslant 6$, we get $a \leqslant 8 m$. We therefore have

$$
\begin{equation*}
(2 t-1) a>p-3 a \geqslant p-24 m>(1-12 \epsilon) p . \tag{4.8}
\end{equation*}
$$

By the hypothesis of the Lemma we have $\rho A \geqslant 1 /(2-\delta)$. Together with (4.8) we get, writing $\left|S^{\prime}\right| \leqslant|S|<p / 2$,

$$
\rho A-\frac{\left|S^{\prime}\right|}{(2 t-1) a}>\frac{1}{2-\delta}-\frac{1}{2-24 \epsilon}
$$

Finally, applying again (4.8), inequality (4.7) becomes

$$
\begin{equation*}
|S+A|>|S|+\frac{p}{2}(1-12 \epsilon)\left(\frac{1}{2-\delta}-\frac{1}{2-24 \epsilon}\right) \tag{4.9}
\end{equation*}
$$

Now recall that by definition of A we have $|A| \geqslant m+3$. We will therefore get that (4.9) contradicts (2.3) whenever the righthand side of (4.9) is
greater than $|S|+2|A|$. Since $|A| \leqslant 3 m+5 \leqslant 4 m \leqslant 2 \epsilon p$, a contradiction is obtained whenever

$$
\begin{equation*}
\frac{1}{2}(1-12 \epsilon)\left(\frac{1}{2-\delta}-\frac{1}{2-24 \epsilon}\right) \geqslant 4 \epsilon \tag{4.10}
\end{equation*}
$$

For $\epsilon \leqslant 10^{-4}$ the inequality (4.10) is verified for every $\delta>5 \cdot 10^{-3}$. Since Lemma 4.4 allows us to choose δ up to the value 10^{-1}, the hypothesis $\ell_{A}(S)+\ell(A)>p$ can not hold, so that the result follows from Lemma 3.4.

4.4. Structure of S when $\ell(2 A)$ is small.

To conclude the proof of Theorem 1.3 it remains to consider the case where $\ell(A)>(2-\delta)(|A|-1)$. We break up the proof into several lemmas.

Lemma 4.7. - Suppose $6 \leqslant m \leqslant \epsilon|S|$ with $\epsilon \leqslant 10^{-4}$. Suppose furthermore that $\ell(A)>(2-\delta)(|A|-1)$. Then
(i) $|2 A| \geqslant(3-\delta)(|A|-1)$.
(ii) $\ell(A) \leqslant(1-\delta / 2)|2 A|$.

Proof. - By point (a) of the final argument in the proof of Lemma 4.4 we know that we can not have $|2 A|<(3-\delta)(|A|-1)$. This proves (i).

Since A is contained in an arithmetic progression of length less than $p / 2$ (Lemma 4.3) we have $\ell(A) \leqslant(\ell(2 A)+1) / 2$. Now Lemma 4.4 implies $\ell(2 A) \leqslant(2-\delta)(|2 A|-1)$, hence $(\ell(2 A)+1) / 2 \leqslant(1-\delta / 2)|2 A|$. This proves (ii).

Next we apply the Plünecke-Ruzsa inequalities to exhibit a subset T of S that sums to a small sumset with $2 A$. We then show that this set T must be contained in an arithmetic progression with few missing elements.

Lemma 4.8. - Suppose $6 \leqslant m \leqslant \epsilon|S|$ with $\epsilon \leqslant 10^{-4}$. Suppose furthermore that $\ell(A)>(2-\delta)(|A|-1)$. Then there exists $T \subset S$ such that, denoting $\lambda=|T| /|S|$,

$$
\begin{align*}
& |2 A| \leqslant \lambda(4+10 \epsilon)(|A|-1) \tag{4.11}\\
& \ell(T) \leqslant|T|+2 \ell(A) \tag{4.12}
\end{align*}
$$

Proof. - By Theorem 4.1 and (2.3), there is $T \subset S$ such that

$$
|T+2 A| \leqslant\left(1+\frac{|A|+m}{|S|}\right)^{2}|T| \leqslant|T|+2(|A|+m) \frac{|T|}{|S|}+\frac{(|A|+m)^{2}}{|S|} \frac{|T|}{|S|}
$$

Writing $|A|+m \leqslant 3 m+5+m \leqslant 5 m \leqslant 5 \epsilon|S|$ and $\lambda=|T| /|S|$ we get

$$
\begin{equation*}
|T+2 A| \leqslant|T|+\lambda(|A|+m)(2+5 \epsilon)<p \tag{4.13}
\end{equation*}
$$

Now apply the Cauchy-Davenport Theorem $|T+2 A| \geqslant|T|+|2 A|-1$ in (4.13) to get, since $|A| \geqslant m+3$,

$$
\begin{align*}
|2 A|-1 & \leqslant \lambda(2|A|-3)(2+5 \epsilon), \text { and } \\
|2 A| & \leqslant 2 \lambda(2+5 \epsilon)(|A|-1)-\lambda(2+5 \epsilon)+1 \tag{4.14}
\end{align*}
$$

Notice that if $\lambda(2+5 \epsilon)<1$ then (4.14) gives $|2 A|<2(|A|-1)+1$ which contradicts the Cauchy-Davenport Theorem. Therefore we have $1-\lambda(2+$ $5 \epsilon) \leqslant 0$ and (4.14) yields (4.11).

In the remaining part we prove (4.12). Recall that the hypothesis of the present lemma together with Lemma 4.4 imply

$$
\begin{equation*}
\ell(2 A) \leqslant(2-\delta)(|2 A|-1) \tag{4.15}
\end{equation*}
$$

Suppose first that

$$
\begin{equation*}
\ell_{2 A}(T)+\ell(2 A)>p \tag{4.16}
\end{equation*}
$$

Set $a_{2}=\ell(2 A)$ and $p=2 t a_{2}+r$ with $0<r<2 a_{2}$. Let $I=I_{1} \cup \cdots \cup I_{2 t}$ with $I_{i}=\left[(i-1) a_{2}, i a_{2}\right)$. By (4.16) we have $T \cap I_{i} \neq \emptyset$ for each $i=1, \ldots, 2 t$. By Lemma 4.5 with $B=T$ and $C=2 A$,

$$
\begin{equation*}
|T+2 A| \geqslant|T|+\left(t-\frac{1}{2}\right) a_{2}\left(\rho(2 A)-\frac{\left|T^{\prime}\right|}{(2 t-1) a_{2}}\right) \tag{4.17}
\end{equation*}
$$

where $T^{\prime}=T \cap I$. By (4.15) we have $a_{2} \leqslant 2|2 A|$, so that by using (4.11) and $\lambda \leqslant 1$ we obtain the following rough upper bound

$$
a_{2} \leqslant(8+20 \epsilon)|A| \leqslant 9(3 m+5) \leqslant 36 m
$$

where we have used $\epsilon \leqslant 1 / 20$.
As in the proof of Lemma 4.6, we have, by definition of t,

$$
\begin{equation*}
(2 t-1) a_{2} \geqslant p-3 a_{2} \geqslant p-108 m \geqslant p(1-54 \epsilon) \tag{4.18}
\end{equation*}
$$

so that, writing $\left|T^{\prime}\right| \leqslant|T| \leqslant|S| \leqslant p / 2$, and applying (4.15) we have

$$
\rho(2 A)-\frac{\left|T^{\prime}\right|}{(2 t-1) a_{2}} \geqslant \frac{1}{2-\delta}-\frac{1}{2-108 \epsilon}
$$

Applying again (4.18), inequality (4.17) becomes

$$
\begin{equation*}
|T+2 A| \geqslant|T|+\frac{p}{2}(1-54 \epsilon)\left(\frac{1}{2-\delta}-\frac{1}{2-108 \epsilon}\right) \tag{4.19}
\end{equation*}
$$

On the other hand, (4.13) implies

$$
|T+2 A| \leqslant|T|+10 m+25 \epsilon m \leqslant|T|+p\left(5 \epsilon+25 \epsilon^{2} / 2\right)
$$

which together with (4.19) gives

$$
\begin{equation*}
5 \epsilon+25 \epsilon^{2} / 2 \geqslant \frac{1}{2}(1-54 \epsilon)\left(\frac{1}{2-\delta}-\frac{1}{2-108 \epsilon}\right) \tag{4.20}
\end{equation*}
$$

For $\epsilon=10^{-4}$ the inequality (4.20) fails to hold for each $\delta \geqslant 2 \cdot 10^{-2}$. Since (4.15) holds for every $\delta \leqslant 10^{-1}$, the hypothesis (4.16) can not hold, so that the sumset $T+2 A$ behaves like a sum of integers. Let us write

$$
|T+2 A|=|T|+|2 A|+\mu
$$

and check that the conditions of Theorem 3.1 hold. By Lemma 4.7 (i) we have

$$
\begin{aligned}
|2 A| & \geqslant(3-\delta)(|A|-1) \\
& \geqslant(2+5 \epsilon)|A|+(1-\delta-5 \epsilon)|A|-3 \\
& \geqslant(2+5 \epsilon)|A|+\frac{3}{2}
\end{aligned}
$$

since $m \geqslant 6$ and $|A| \geqslant m+3 \geqslant 9$. Therefore

$$
\begin{aligned}
2|2 A| & \geqslant 2(2+5 \epsilon)|A|+3 \\
& \geqslant(2+5 \epsilon)(|A|+m)+3
\end{aligned}
$$

which, since $\mu \leqslant(|A|+m)(2+5 \epsilon)-|2 A|$ by (4.13), leads to

$$
\begin{equation*}
|2 A| \geqslant \mu+3 \tag{4.21}
\end{equation*}
$$

Now by definition of λ we have $|T|=\lambda|S|$ and we also have $|S| \geqslant 11 \epsilon|S|$, so that

$$
\begin{aligned}
|T| & \geqslant \lambda 11 \epsilon|S| \geqslant \lambda 11 m \\
& \geqslant \lambda(2+5 \epsilon) 5 m \geqslant \lambda(2+5 \epsilon)(|A|+m)
\end{aligned}
$$

and, since $\mu \leqslant \lambda(|A|+m)(2+5 \epsilon)-|2 A|$ by (4.13), we obtain

$$
\begin{equation*}
|T| \geqslant \mu+|2 A| \geqslant \mu+4 \tag{4.22}
\end{equation*}
$$

Inequalities (4.21) and (4.22) mean that Theorem 3.1 holds and we have:

$$
\ell(T) \leqslant|T|+\mu+1 \leqslant|T|+|2 A| \leqslant|T|+\ell(2 A) \leqslant|T|+2 \ell(A)
$$

This proves (4.12) and concludes the lemma.
Lemma 4.9. - Suppose $6 \leqslant m \leqslant \epsilon|S|$ with $\epsilon \leqslant 10^{-4}$. Suppose furthermore that $\ell(A)>(2-\delta)(|A|-1)$. Then $\ell(S) \leqslant|S|+m+1$.

Proof. - Let T be the set guaranteed by Lemma 4.8. Let $\bar{T}=S \backslash T$, which belongs to an interval of length $p-\ell(T)$. Set $a=\ell(A)$. Let us apply again Lemma 4.5, this time with $B=S, C=A$, and t defined so as to have $p-\ell(T)=2 t a+r, 0 \leqslant r<2 a$. As before, set $I=I_{1} \cup \cdots \cup I_{2 t}$ with $I_{i}=[(i-1) a, i a)$. Note that $T \cap I=\emptyset$, so that $\bar{T} \cap I=S \cap I$. Let us first suppose

$$
\begin{equation*}
\ell_{A}(S)+\ell(A)>p \tag{4.23}
\end{equation*}
$$

which implies $\bar{T} \cap I_{i} \neq \emptyset$ for every $i=1, \ldots, 2 t$, so that by Lemma 4.5, and denoting $\bar{T}^{\prime}=\bar{T} \cap I=S \cap I$,

$$
\begin{align*}
|S+A| & \geqslant|S \cup[(S+A) \cap I]| \\
& \geqslant|S|+\left(t-\frac{1}{2}\right) a\left(\rho A-\frac{\left|\bar{T}^{\prime}\right|}{(2 t-1) a}\right) \tag{4.24}
\end{align*}
$$

By definition of t and by (4.12) we have

$$
\begin{equation*}
(2 t-1) a>p-\ell(T)-3 a \geqslant p-|T|-5 a . \tag{4.25}
\end{equation*}
$$

Now Lemma 4.7 (ii) and (4.11) give the following upper bound on a

$$
a \leqslant|2 A| \leqslant \lambda(4+10 \epsilon)|A| \leqslant \lambda(4+10 \epsilon) 4 m \leqslant \lambda(4+10 \epsilon) 2 \epsilon p
$$

so that we can write $-5 a \geqslant-\lambda f(\epsilon) p$ with $f(\epsilon)=10(4+10 \epsilon) \epsilon$. Writing $|T|=\lambda|S|<\lambda p / 2,(4.25)$ becomes

$$
\begin{equation*}
(2 t-1) a>p\left(1-\lambda\left(\frac{1}{2}+f(\epsilon)\right)\right) \tag{4.26}
\end{equation*}
$$

Next we write $\left|\bar{T}^{\prime}\right| \leqslant|\bar{T}|=|S|-|T|=(1-\lambda)|S|$, so that $|S| \leqslant p / 2$ gives

$$
\begin{equation*}
\left|\bar{T}^{\prime}\right| \leqslant \frac{p}{2}(1-\lambda) \tag{4.27}
\end{equation*}
$$

Finally we bound ρA from below. Apply again Lemma 4.7 (ii) and (4.11) to get

$$
\ell(A) \leqslant(1-\delta / 2)|2 A| \leqslant(1-\delta / 2) \lambda(4+10 \epsilon)(|A|-1)
$$

so that we have

$$
\begin{equation*}
\rho A \geqslant \frac{1}{\lambda(1-\delta / 2)(4+10 \epsilon)} \tag{4.28}
\end{equation*}
$$

Applying (4.26), (4.27) and (4.28) to (4.24) now gives

$$
|S+A|>|S|+\frac{p}{2}\left[\frac{1-\lambda\left(\frac{1}{2}+f(\epsilon)\right)}{\lambda(1-\delta / 2)(4+10 \epsilon)}-\frac{1}{2}(1-\lambda)\right] .
$$

Together with (2.3), writing $|A| \leqslant 4 m$ and $m \leqslant \epsilon p / 2$, we obtain

$$
\begin{equation*}
\frac{1-\lambda\left(\frac{1}{2}+f(\epsilon)\right)}{\lambda(1-\delta / 2)(4+10 \epsilon)}-\frac{1}{2}(1-\lambda)-5 \epsilon<0 \tag{4.29}
\end{equation*}
$$

Now there exists $\epsilon_{\delta}>5.810^{-3}>0$ such that for every $\epsilon \leqslant \epsilon_{\delta}$, the lefthandside of (4.29) is strictly positive for every value of $\lambda \in[0,1]$. In that case (4.29) can not hold and we obtain a contradiction with the hypothesis (4.23). Therefore Theorem 3.1 implies the result.

Numerical values. As it has been shown in the proofs Theorem 1.3 holds with $\epsilon=10^{-4}$. As for the value of p_{0}, we use $m \geqslant 6$ in Section 4, so in order to cover smaller values of m, the prime p should satisfy the condition in Lemma 3.5 that $\log _{4} p \geqslant 6 m+11 \geqslant 47$ which is equivalent to $p \geqslant 2^{94}$. We have tried to strike a balance between readability and obtaining the best possible constants. These values of ϵ and p_{0} are not the best possible, but they give a reasonable account of what can be achieved through the methods of this paper.

BIBLIOGRAPHY

[1] Y. F. Bilu, V. F. Lev \& I. Z. Ruzsa, "Rectification principles in additive number theory", Discrete Comput. Geom. 19 (1998), no. 3, Special Issue, p. 343-353, Dedicated to the memory of Paul Erdős.
[2] G. A. Freĭman, "The addition of finite sets. I", Izv. Vysš. Učebn. Zaved. Matematika 1959 (1959), no. 6 (13), p. 202-213.
[3] -, "Inverse problems in additive number theory. Addition of sets of residues modulo a prime", Dokl. Akad. Nauk SSSR 141 (1961), p. 571-573.
[4] —_, Foundations of a structural theory of set addition, American Mathematical Society, Providence, R. I., 1973, Translated from the Russian, Translations of Mathematical Monographs, Vol 37, vii+108 pages.
[5] B. Green \& I. Z. Ruzsa, "Sets with small sumset and rectification", Bull. London Math. Soc. 38 (2006), no. 1, p. 43-52.
[6] Y. O. Hamidoune, "On the connectivity of Cayley digraphs", European J. Combin. 5 (1984), no. 4, p. 309-312.
[7] , "An isoperimetric method in additive theory", J. Algebra 179 (1996), no. 2, p. 622-630.
[8] - "Subsets with small sums in abelian groups. I. The Vosper property", European J. Combin. 18 (1997), no. 5, p. 541-556.
[9] , "Some results in additive number theory. I. The critical pair theory", Acta Arith. 96 (2000), no. 2, p. 97-119.
[10] Y. O. Hamidoune \& Ø. J. Rødseth, "An inverse theorem mod p", Acta Arith. 92 (2000), no. 3, p. 251-262.
[11] Y. O. Hamidoune, O. Serra \& G. Zémor, "On the critical pair theory in $\mathbb{Z} / p \mathbb{Z}$ ", Acta Arith. 121 (2006), no. 2, p. 99-115.
[12] , "On the critical pair theory in abelian groups: beyond Chowla's theorem", Combinatorica 28 (2008), no. 4, p. 441-467.
[13] V. F. Lev \& P. Y. Smeliansky, "On addition of two distinct sets of integers", Acta Arith. 70 (1995), no. 1, p. 85-91.
[14] M. B. Nathanson, Additive number theory, Graduate Texts in Mathematics, vol. 165, Springer-Verlag, New York, 1996, Inverse problems and the geometry of sumsets, xiv+293 pages.
[15] Ø. J. RøDSEth, "On Freiman's 2.4-Theorem", Skr. K. Nor. Vidensk. Selsk. (2006), no. 4, p. 11-18.
[16] I. Z. Ruzsa, "An application of graph theory to additive number theory", Sci. Ser. A Math. Sci. (N.S.) 3 (1989), p. 97-109.
[17] O. Serra \& G. ZÉmor, "On a generalization of a theorem by Vosper", Integers (2000), p. A10, 10 pp. (electronic).
[18] T. Tao \& V. Vu, Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006, xviii+512 pages.
[19] A. G. Vosper, "The critical pairs of subsets of a group of prime order", J. London Math. Soc. 31 (1956), p. 200-205.

Manuscrit reccu le 3 avril 2008, accepté le 15 décembre 2008.

Oriol SERRA
Universitat Politècnica de Catalunya
Matemàtica Aplicada IV Campus Nord - Edif. C3, C. Jordi Girona, 1-3 08034 Barcelona (Spain)
oserra@ma4.upc.edu
Gilles ZÉMOR
Université Bordeaux 1
Institut de Mathématiques de Bordeaux, UMR 5251 351, cours de la Libération 33405 Talence (France)
zemor@math.u-bordeaux1.fr

[^0]: Keywords: Sumset, arithmetic progression, additive combinatorics.
 Math. classification: 11P70.
 (*) Supported by the Spanish Ministry of Science under project MTM2008-06620-C0301.

[^1]: ${ }^{(1)}$ In [1] their statement is slightly different from Theorem 3.2, but this is actually what they prove.

