Jacobians of degenerating families of curves are well-understood over 1-dimensional bases due to work of Néron and Raynaud; the fundamental tool is the Néron model and its description via the Picard functor. Over higher-dimensional bases Néron models typically do not exist, but in this paper we construct a universal base change after which a Néron model of the universal jacobian does exist. This yields a new partial compactification of the moduli space of curves, and of the universal jacobian over it. The map is separated and relatively representable. The Néron model is separated and has a group law extending that on the jacobian. We show that Caporaso’s balanced Picard stack acquires a torsor structure after pullback to a certain open substack of .
Les jacobiennes de dégénérescences de courbes au-dessus de bases de dimension 1 sont bien comprises grâce aux travaux de Néron et Raynaud ; l’outil fondamental est le modèle de Néron et sa description à l’aide du foncteur de Picard. En général, sur des bases de dimension supérieure les modèles de Néron n’existent pas, mais dans cet article nous construisons un changement de base qui est universel pour la propriété qu’un modèle de Néron de la jacobienne universelle existe. Ceci fournit une nouvelle compactification partielle de l’espace de modules des courbes et de la jacobienne universelle qui vit dessus. Le morphisme est séparé et relativement représentable. Le modèle de Néron est séparé et possède une loi de groupe qui étend celle de la jacobienne. Nous montrons que le « champ de Picard équilibré » de Caporaso acquiert une structure de torseur après changement de base à un certain sous-champ ouvert de .
Revised:
Accepted:
Published online:
Mots-clés : Néron models, jacobians, moduli of curves
@article{AHL_2021__4__1727_0, author = {Holmes, David}, title = {A {N\'eron} model of the universal jacobian}, journal = {Annales Henri Lebesgue}, pages = {1727--1766}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.115}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.115/} }
Holmes, David. A Néron model of the universal jacobian. Annales Henri Lebesgue, Volume 4 (2021), pp. 1727-1766. doi : 10.5802/ahl.115. http://www.numdam.org/articles/10.5802/ahl.115/
[BH16] Fine compactified moduli of enriched structures on stable curves (2016) (https://arxiv.org/abs/1607.08835v1)
[BLR90] Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 21, Springer, 1990 | DOI | Zbl
[Cap08] Néron models and compactified Picard schemes over the moduli stack of stable curves, Am. J. Math., Volume 130 (2008) no. 1, pp. 1-47 | DOI | MR | Zbl
[Chi15] Néron models of Pic via Pic (2015) (http://arxiv.org/abs/1509.06483)
[DM69] The irreducibility of the space of curves of given genus, Publ. Math., Inst. Hautes Étud. Sci. (1969) no. 36, pp. 75-109 | DOI | Numdam | MR | Zbl
[Est01] Compactifying the relative Jacobian over families of reduced curves, Trans. Am. Math. Soc., Volume 353 (2001) no. 8, pp. 3045-3095 | DOI | MR | Zbl
[Ful93] Introduction to toric varieties. The 1989 William H. Roever lectures in geometry, Annals of Mathematics Studies, Princeton University Press, 1993 no. 131 | Zbl
[Hol17] Quasi-compactness of Néron models, and an application to torsion points, Manuscr. Math., Volume 153 (2017) no. 3-4, pp. 323-330 | DOI | MR | Zbl
[Hol19] Néron models of jacobians over base schemes of dimension greater than 1, J. Reine Angew. Math., Volume 747 (2019), pp. 109-145 | DOI | MR | Zbl
[Hol21] Extending the double ramification cycle by resolving the Abel–Jacobi map, J. Inst. Math. Jussieu, Volume 20 (2021) no. 1, pp. 331-359 | DOI | MR | Zbl
[Jon96] Smoothness, semi-stability and alterations, Publ. Math., Inst. Hautes Étud. Sci., Volume 83 (1996), pp. 51-93 | Numdam | MR | Zbl
[Knu83] The projectivity of the moduli space of stable curves. II. The stacks , Math. Scand., Volume 52 (1983) no. 2, pp. 161-199 | DOI | MR | Zbl
[KP19] The stability space of compactified universal Jacobians, Trans. Am. Math. Soc., Volume 372 (2019) no. 7, pp. 4851-4887 | DOI | MR | Zbl
[Liu02] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002 (translated from the French by Reinie Erné, Oxford Science Publications) | MR | Zbl
[Mai98] Moduli space of enriched stable curves, Ph. D. Thesis, Harvard University, USA (1998) | MR
[Mel09] Compactified Picard stacks over the moduli space of curves with marked points, Ph. D. Thesis, (Università degli Studi Roma Tre, Roma, Italia (2009)
[Sta13] Stacks Project, 2013 (http://stacks.math.columbia.edu)
Cited by Sources: