We prove that every -regular unimodular random network carries an invariant random Schreier decoration. Equivalently, it is the Schreier coset graph of an invariant random subgroup of the free group . As a corollary we get that every -regular graphing is the local isomorphic image of a graphing coming from a p.m.p. action of .
The key ingredients of the analogous statement for finite graphs do not generalize verbatim to the measurable setting. We find a more subtle way of adapting these ingredients and prove measurable coloring theorems for graphings along the way.
Nous démontrons que tout graphe aléatoire unimodulaire -régulier admet une décoration de Schreier aléatoire invariante. De manière équivalent, c’est le graphe de Schreier des classes d’un sous-groupe invariant aléatoire du groupe libre . Comme corollaire, nous obtenons que tout graphage -régulier est localement l’image isomorphe d’un graphage provenant d’une action de préservant une mesure de probabilité.
Les ingrédients-clé de l’énoncé analogue pour les graphes finis ne se généralisent pas tels quels au contexte mesurable. Nous trouvons une manière plus subtile d’adapter ces ingrédients, et nous obtenons en chemin des théorèmes de coloriages mesurables de graphages.
Revised:
Accepted:
Published online:
Mots-clés : Schreier graph, graph limits, unimodular random graph, Invariant Random Subgroup
@article{AHL_2021__4__1705_0, author = {T\'oth, L\'aszl\'o M\'arton}, title = {Invariant {Schreier} decorations of unimodular random networks}, journal = {Annales Henri Lebesgue}, pages = {1705--1726}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.114}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.114/} }
Tóth, László Márton. Invariant Schreier decorations of unimodular random networks. Annales Henri Lebesgue, Volume 4 (2021), pp. 1705-1726. doi : 10.5802/ahl.114. http://www.numdam.org/articles/10.5802/ahl.114/
[AGV14] Kesten’s theorem for invariant random subgroups, Duke Math. J., Volume 163 (2014) no. 3, pp. 465-488 | MR | Zbl
[AL07] Processes on unimodular random networks, Electron. J. Probab., Volume 12 (2007), pp. 1454-1508 | MR | Zbl
[Bow12] Invariant random subgroups of the free group (2012) (https://arxiv.org/abs/1204.5939v1)
[BS01] Recurrence of Distributional Limits of Finite Planar Graphs, Electron. J. Probab., Volume 6 (2001), 23, p. 13 pp. | DOI | MR | Zbl
[BT17] Unimodularity of invariant random subgroups, Trans. Am. Math. Soc., Volume 369 (2017) no. 6, pp. 4043-4061 | DOI | MR | Zbl
[Can13] On invariant Schreier structures (2013) (https://arxiv.org/abs/1309.5163v1)
[CK13] Measurable chromatic and independence numbers for ergodic graphs and group actions, Groups Geom. Dyn., Volume 7 (2013) no. 1, pp. 127-180 | DOI | MR | Zbl
[CL17] Invariant random perfect matchings in Cayley graphs, Groups Geom. Dyn., Volume 11 (2017) no. 1, pp. 211-244 | DOI | MR | Zbl
[CLP16] Kőnig’s line coloring and Vizing’s theorems for graphings, Forum Math. Sigma, Volume 4 (2016), e27 | Zbl
[Ele07] On limits of finite graphs, Combinatorica, Volume 27 (2007) no. 4, pp. 503-507 | DOI | MR | Zbl
[HLS14] Limits of locally–globally convergent graph sequences, Geom. Funct. Anal., Volume 24 (2014) no. 1, pp. 269-296 | DOI | MR | Zbl
[KM15] Descriptive graph combinatorics, 2015 (preprint available at http://www.math.caltech.edu/~kechris/papers/combinatorics20book.pdf)
[KST99] Borel chromatic numbers, Adv. Math., Volume 141 (1999) no. 1, pp. 1-44 | DOI | MR | Zbl
[Lac88] Closed sets without measurable matching, Proc. Am. Math. Soc., Volume 103 (1988) no. 3, pp. 894-896 | DOI | MR | Zbl
[Lov12] Large networks and graph limits, Colloquium Publications, 60, American Mathematical Society, 2012 | Zbl
Cited by Sources: