We show that for any closed surface of genus greater than one and for any finite weighted graph filling the surface, there exists a hyperbolic metric which realizes the least Dirichlet energy harmonic embedding of the graph among a fixed homotopy class and all hyperbolic metrics on the surface. We give explicit examples of such hyperbolic surfaces through a new interpretation of the Nielsen realization problem for the mapping class groups.
Nous montrons que pour toute surface fermée de genre au moins deux et pour tout graphe pondéré fini remplissant la surface, il existe une métrique hyperbolique qui réalise le plus petit plongement harmonique en énergie de Dirichlet du graphe parmi une classe d’homotopie fixée et toutes les métriques hyperboliques sur la surface. Nous donnons des exemples explicites de telles surfaces hyperboliques par une nouvelle interprétation du problème de réalisation de Nielsen pour les groupes de difféotopies des surfaces.
Accepted:
Published online:
Mots-clés : Discrete harmonic maps, finite weighted graphs, hyperbolic surfaces, Weil-Petersson geometry of Teichmüller spaces
@article{AHL_2021__4__1767_0, author = {Kajigaya, Toru and Tanaka, Ryokichi}, title = {Uniformizing surfaces via discrete harmonic maps}, journal = {Annales Henri Lebesgue}, pages = {1767--1807}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.116}, language = {en}, url = {http://www.numdam.org/articles/10.5802/ahl.116/} }
Kajigaya, Toru; Tanaka, Ryokichi. Uniformizing surfaces via discrete harmonic maps. Annales Henri Lebesgue, Volume 4 (2021), pp. 1767-1807. doi : 10.5802/ahl.116. http://www.numdam.org/articles/10.5802/ahl.116/
[CdV91a] Comment rendre géodésique une triangulation d’une surface ?, Enseign. Math., Volume 37 (1991) no. 3-4, pp. 201-212 | Zbl
[CdV91b] Un principe variationnel pour les empilements de cercles, Invent. Math., Volume 104 (1991) no. 3, pp. 655-669 | DOI | MR | Zbl
[EL81] Deformations of metrics and associated harmonic maps, Proc. Indian Acad. Sci., Math. Sci., Volume 90 (1981) no. 1, pp. 33-45 | DOI | MR | Zbl
[Eps66] Curves von -manifolds and isotopies, Acta Math., Volume 115 (1966), pp. 83-107 | DOI | Zbl
[FM11] A Primer on Mapping Class Groups, Princeton Mathematical Series, 49, Princeton University Press, 2011 | DOI | Zbl
[FN03] Discontinuous Groups of Isometries in the Hyperbolic Plane, De Gruyter Studies in Mathematics, 29, Walter de Gruyter, 2003 | Zbl
[Hat02] Algebraic Topology, Cambridge University Press, 2002 | Zbl
[Kee74] Collars on Riemann surfaces, Discontinuous Groups and Riemann Surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) (Annals of Mathematics Studies), Volume 79, Princeton University Press (1974), pp. 263-268 | DOI | MR | Zbl
[Ker83] The Nielsen realization problem, Ann. Math., Volume 117 (1983) no. 2, pp. 235-265 | DOI | MR | Zbl
[Koi79] Variation of harmonic mapping caused by a deformation of Riemannian metric, Hokkaido Math. J., Volume 8 (1979) no. 2, pp. 199-213 | MR | Zbl
[KS01] Standard realizations of crystal lattices via harmonic maps, Trans. Am. Math. Soc., Volume 353 (2001) no. 1, pp. 1-20 | DOI | MR | Zbl
[KWZ18] Plurisubharmonicity and geodesic convexity of energy function on Teichmüller space (2018) (https://arxiv.org/abs/1809.00255v1)
[Ste05] Introduction to Circle Packing: The Theory of Discrete Analytic Functions, Cambridge University Press, 2005 | Zbl
[Sti92] Geometry of Surfaces, Universitext, Springer, 1992 | DOI | Zbl
[Sun13] Topological Crystallography. With a View Towards Discrete Geometric Analysis, Surveys and Tutorials in the Applied Mathematical Sciences, 6, Springer, 2013 | Zbl
[Thu78] The Geometry and Topology of Three-Manifolds (1978) (http://www.math.unl.edu/~mbrittenham2/classwk/990s08/public/thurston.notes.pdf/6a.pdf)
[Tro92] Teichmüller Theory in Riemannian Geometry: based on lecture notes by Jochen Denzler, Lectures in Mathematics, ETH Zürich, Birkhäuser, 1992 | DOI | Zbl
[Wol87] Geodesic length functions and the Nielsen problem, J. Differ. Geom., Volume 25 (1987) no. 2, pp. 275-296 | MR | Zbl
[Wol12] The Weil–Petersson Hessian of length of Teichmüller space, J. Differ. Geom., Volume 91 (2012) no. 1, pp. 129-169 | Zbl
[Yam99] Weil–Petersson convexity of the energy functional on classical and universal Teichmüller spaces, J. Differ. Geom., Volume 51 (1999) no. 1, pp. 35-96 | MR | Zbl
[Yam14] Local and global aspects of Weil–Petersson geometry, IRMA Lectures in Mathematics and Theoretical Physics, 19, European Mathematical Society (2014), pp. 43-111 | MR | Zbl
[Yam17] On the Weil–Petersson convex geometry of Teichmüller space, Sugaku Expo., Volume 30 (2017) no. 2, pp. 159-186 | DOI | MR | Zbl
Cited by Sources: