Optimal stochastic control with recursive cost functionals of stochastic differential systems reflected in a domain
ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 4, pp. 1150-1177.

The paper is concerned with optimal control of a stochastic differential system reflected in a domain. The cost functional is implicitly defined via a generalized backward stochastic differential equation developed by Pardoux and Zhang [Probab. Theory Relat. Fields 110 (1998) 535–558]. The value function is shown to be the unique viscosity solution to the associated Hamilton–Jacobi–Bellman equation, which is a fully nonlinear parabolic partial differential equation with a nonlinear Neumann boundary condition. The proof requires new estimates for the reflected stochastic differential system.

Received:
DOI: 10.1051/cocv/2014062
Classification: 60H99, 60H30, 35J60, 93E05, 90C39
Keywords: Hamilton–Jacobi–Bellman equation, nonlinear Neumann boundary, value function, backward stochastic differential equations, dynamic programming principle, viscosity solution
Li, Juan 1; Tang, Shanjian 2

1 School of Mathematics and Statistics, Shandong University, Weihai, Weihai 264200, P.R. China
2 Institute of Mathematics and Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, Shanghai 200433, P.R. China
@article{COCV_2015__21_4_1150_0,
     author = {Li, Juan and Tang, Shanjian},
     title = {Optimal stochastic control with recursive cost functionals of stochastic differential systems reflected in a domain},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1150--1177},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {4},
     year = {2015},
     doi = {10.1051/cocv/2014062},
     mrnumber = {3395759},
     zbl = {1341.49020},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014062/}
}
TY  - JOUR
AU  - Li, Juan
AU  - Tang, Shanjian
TI  - Optimal stochastic control with recursive cost functionals of stochastic differential systems reflected in a domain
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 1150
EP  - 1177
VL  - 21
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014062/
DO  - 10.1051/cocv/2014062
LA  - en
ID  - COCV_2015__21_4_1150_0
ER  - 
%0 Journal Article
%A Li, Juan
%A Tang, Shanjian
%T Optimal stochastic control with recursive cost functionals of stochastic differential systems reflected in a domain
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 1150-1177
%V 21
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014062/
%R 10.1051/cocv/2014062
%G en
%F COCV_2015__21_4_1150_0
Li, Juan; Tang, Shanjian. Optimal stochastic control with recursive cost functionals of stochastic differential systems reflected in a domain. ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 4, pp. 1150-1177. doi : 10.1051/cocv/2014062. http://www.numdam.org/articles/10.1051/cocv/2014062/

G. Barles, Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations. J. Differ. Equ. 106 (1993) 90–106. | DOI | MR | Zbl

J. Bismut, Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44 (1973) 384–404. | DOI | MR | Zbl

J. Bismut, Contrôl des systèmes linéares quadratiques, in Applications de L’intégrale Stochastique, Séminaire de Probabilité XII, Vol. 649 of Lect. Notes Math. Springer, Berlin, Heidelberg, New York (1978) 180–264. | Numdam | MR | Zbl

J. Bismut, An introductory approach to duality in optimal stochastic control. SIAM Rev. 20 (1978) 62–78. | DOI | MR | Zbl

B. Boufoussi and J. Van Casteren, An approximation result for a nonlinear Neumann boundary value problem via BSDEs. Stoch. Proc. Appl. 114 (2004) 331–350. | DOI | MR | Zbl

M. Bourgoing, Viscosity solutions of fully nonlinear second order parabolic equations with L 1 -time dependence and Neumann boundary conditions. Available on http://www.phys.univ-tours.fr/˜barles/artL1-1.pdf. | MR | Zbl

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton–Jacobi–Bellman–Isaacs equations. SIAM J. Control. Optim. 47 (2008) 444–475. | DOI | MR | Zbl

M.G. Crandall, H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1–67. | DOI | MR | Zbl

R.W.R. Darling and E. Pardoux, Backwards SDE with random terminal time, and applications to semilinear elliptic PDE. Ann. Probab. 25 (1997) 1135–1159. | MR | Zbl

M.V. Day, Neumann-Type Boundary Conditions for Hamilton–Jacobi Equations in Smooth Domains. Appl. Math. Optim. 53 (2006) 359–381. | DOI | MR | Zbl

F. Delbaen and S. Tang, Harmonic analysis of stochastic equations and backward stochastic differential equations. Probab. Theory Relat. Fields 146 (2010) 291–336. | DOI | MR | Zbl

N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. | DOI | MR | Zbl

Y. Hu, Probabilistic interpretation for a system of quasilinear elliptic partial differential equations with Neumann boundary conditions. Stochastic. Process. Appl. 48 (1993) 107–121. | DOI | MR | Zbl

P.L. Lions, Neumann type boundary conditions for Hamilton–Jacobi equations. Duke Math. J. 52 (1985) 793–820. | DOI | MR | Zbl

P.L. Lions and A.S. Sznitman, Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511–537. | DOI | MR | Zbl

J.L. Menaldi, Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32 (1983) 733–744. | DOI | MR | Zbl

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990) 55–61. | DOI | MR | Zbl

E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic partial differential equations and their applications. Vol. 176 of Proc. IFIP Int. Conf., Charlotte/NC (USA) (1991), Lect. Notes Control Inf. Sci. Springer (1992) 200–217. | MR | Zbl

E. Pardoux and R.J. Williams, Symmetric reflected diffusions. Ann. Inst. Henri Poincaré 30 (1994) 13–62. | Numdam | MR | Zbl

E. Pardoux and S. Zhang, Generalized BSDEs and nonlinear Neumann boundary value problems. Probab. Theory Relat. Fields 110 (1998) 535–558. | DOI | MR | Zbl

S. Peng, BSDE and stochastic optimizations (in Chinese), in: Chap. 2 of Topics in stochastic analysis, edited by J. Yan, S. Peng, S. Fang and L. Wu. Science Press, Beijing (1997).

S. Peng, A generalized dynamic programming principle and Hamilton–Jacobi–Bellman equation. Stoch. Stoch. Rep. 38 (1992) 119–134. | DOI | MR | Zbl

Y. Saisho, Stochastic differential equations for multidimensional domains with refecting boundary. Probab. Theory Relat. Fields 74 (1987) 455-477. | DOI | MR | Zbl

Cited by Sources: