Topological gradient for a fourth order operator used in image analysis
ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 4, pp. 1120-1149.

This paper is concerned with the computation of the topological gradient associated to a fourth order Kirchhoff type partial differential equation and to a second order cost function. This computation is motivated by fine structure detection in image analysis. The study of the topological sensitivity is performed both in the cases of a circular inclusion and a crack.

DOI: 10.1051/cocv/2014061
Classification: 35J30, 49Q10, 49Q12, 94A08, 94A13
Keywords: Topological gradient, fourth order PDE, fine structures, 2D imaging
Aubert, Gilles 1; Drogoul, Audric 1

1 UniversitéNice Sophia Antipolis, CNRS, LJAD, UMR 7351, 06100 Nice, France
@article{COCV_2015__21_4_1120_0,
     author = {Aubert, Gilles and Drogoul, Audric},
     title = {Topological gradient for a fourth order operator used in image analysis},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1120--1149},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {4},
     year = {2015},
     doi = {10.1051/cocv/2014061},
     mrnumber = {3395758},
     zbl = {1325.49050},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014061/}
}
TY  - JOUR
AU  - Aubert, Gilles
AU  - Drogoul, Audric
TI  - Topological gradient for a fourth order operator used in image analysis
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 1120
EP  - 1149
VL  - 21
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014061/
DO  - 10.1051/cocv/2014061
LA  - en
ID  - COCV_2015__21_4_1120_0
ER  - 
%0 Journal Article
%A Aubert, Gilles
%A Drogoul, Audric
%T Topological gradient for a fourth order operator used in image analysis
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 1120-1149
%V 21
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014061/
%R 10.1051/cocv/2014061
%G en
%F COCV_2015__21_4_1120_0
Aubert, Gilles; Drogoul, Audric. Topological gradient for a fourth order operator used in image analysis. ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 4, pp. 1120-1149. doi : 10.1051/cocv/2014061. http://www.numdam.org/articles/10.1051/cocv/2014061/

R.A. Adams, Sobolev spaces. Pure Appl. Math. Academic Press, New York (1978). | Zbl

S. Amstutz, Sensitivity analysis with respect to a local perturbation of the material property. Asymp. Anal. 49 (2006) 87–108. | MR | Zbl

S. Amstutz, The topological asymptotic for the Navier-Stokes equations. ESAIM: COCV 11 (2005) 401–425. | Numdam | MR | Zbl

S. Amstutz and A.A. Novotny, Topological asymptotic analysis of the Kirchhoff plate bending problem. ESAIM: COCV 17 (2011) 705–721. | Numdam | MR | Zbl

G. Aubert and A. Drogoul, Topological gradient for fourth-order PDE and application to the detection of fine structures in 2D images. C.R. Math. 352 (2014) 609–613. | DOI | MR | Zbl

D. Auroux, From restoration by topological gradient to medical image segmentation via an asymptotic expansion. Math. Comput. Model. 49 (2009) 2191–2205. | DOI | MR | Zbl

D. Auroux, M. Masmoudi and L. Jaafar Belaid, Image restoration and classification by topological asymptotic expansion, in Variational Formulations in Mechanics: Theory and Applications. Edited by E. Taroco, E.A. de Souza Neto and A.A. Novotny. CIMNE, Barcelona, Spain (2007) 23–42.

L. Jaafar Belaid, M. Jaoua, M. Masmoudi, and L. Siala, Application of the topological gradient to image restoration and edge detection. Eng. Anal. Boundary Elements 32 (2008) 891–899. | DOI | Zbl

G. Chen and J. Zhou, Boundary Element Methods with Applications to Nonlinear Problems. Atlantis Stud. Math. Eng. Sci. (1992). | MR | Zbl

A. Drogoul, Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in imaging. SIAM J. Imaging Sci. 7 (2014) 2700–2731. | DOI | MR | Zbl

A. Drogoul, Topological gradient method applied to the detection of edges and fine structures in imaging. Ph.D. thesis, University of Nice Sophia Antipolis (2014).

P.A. Martin, Exact solution of a hypersingular integral equation. J. Integral Equations Appl. 4 (1992) 197–204. | DOI | MR | Zbl

M. Masmoudi, The topological asymptotic. In Computational Methods for Control Applications. Vol. 16 of GAKUTO Internat. Ser. Math. Appl. Tokyo, Japan (2001). | Zbl

J.-C. Nédélec, Acoustic and electromagnetic equations: integral representations for harmonic problems. Appl. Math. Sci. Springer, New York (2001). | MR | Zbl

L. Nirenberg, On elliptic partial differential equations. Annali della Scuola Normale Superiore di Pisa – Classe di Scienze 13 (1959) 115–162. | Numdam | MR | Zbl

D. Ruiz, A note on the uniformity of the constant in the Poincaré inequality. Preprint arXiv:1208.6045 (2012). | MR | Zbl

J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272. | DOI | MR | Zbl

C. Steger, An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 113–125. | DOI

Cited by Sources: