Partial differential equations/Dynamical systems
Turing patterns induced by cross-diffusion in a 2D domain with strong Allee effect
[Motifs de Turing induits par réaction–diffusion croisée dans un système bidimensionnel avec un effet Allee fort]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 11-12, pp. 863-877.

Dans cette Note, nous introduisons un modèle prédateur–proie dans un domaine de dimension deux, avec effet Allee fort. Nous étudions l'instabilité de Turing et le phénomène d'émergence de motifs. L'apparition de l'instabilité de Turing est garantie par les conditions fournies par l'analyse de la stabilité des points d'équilibre locaux. Les équations d'amplitude (une équation de Stuart–Landau cubique dans le cas supercritique et quintique dans le cas sous-critique) sont établies en utilisant la méthode des échelles de temps multiples. On montre que le système admet des motifs comme des carrés, des bandes, des motifs en mode mixte, des taches et des motifs hexagonaux. Nous obtenons les solutions asymptotiques du modèle près de l'instabilité, à partir des équations d'amplitude. Finalement, les simulations numériques montrent comment la diffusion croisée joue un rôle important dans l'apparition de motifs.

In this work, we introduce a two-dimensional domain predator-prey model with strong Allee effect and investigate the Turing instability and the phenomena of the emergence of patterns. The occurrence of the Turing instability is ensured by the conditions that are procured by using the stability analysis of local equilibrium points. The amplitude equations (for supercritical case cubic Stuart–Landau equation and for subcritical quintic Stuart–Landau equation) are derived appropriate for each case by using the method of multiple time scale and show that the system supports patterns like squares, stripes, mixed-mode patterns, spots and hexagonal patterns. We obtain the asymptotic solutions to the model close to the onset instability based on the amplitude equations. Finally, numerically simulations tell how cross-diffusion plays an important role in the emergence of patterns.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.10.011
Iqbal, Naveed 1 ; Wu, Ranchao 2

1 Mathematics Department, Faculty of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
2 School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, PR China
@article{CRMATH_2019__357_11-12_863_0,
     author = {Iqbal, Naveed and Wu, Ranchao},
     title = {Turing patterns induced by cross-diffusion in a {2D} domain with strong {Allee} effect},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {863--877},
     publisher = {Elsevier},
     volume = {357},
     number = {11-12},
     year = {2019},
     doi = {10.1016/j.crma.2019.10.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2019.10.011/}
}
TY  - JOUR
AU  - Iqbal, Naveed
AU  - Wu, Ranchao
TI  - Turing patterns induced by cross-diffusion in a 2D domain with strong Allee effect
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 863
EP  - 877
VL  - 357
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2019.10.011/
DO  - 10.1016/j.crma.2019.10.011
LA  - en
ID  - CRMATH_2019__357_11-12_863_0
ER  - 
%0 Journal Article
%A Iqbal, Naveed
%A Wu, Ranchao
%T Turing patterns induced by cross-diffusion in a 2D domain with strong Allee effect
%J Comptes Rendus. Mathématique
%D 2019
%P 863-877
%V 357
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2019.10.011/
%R 10.1016/j.crma.2019.10.011
%G en
%F CRMATH_2019__357_11-12_863_0
Iqbal, Naveed; Wu, Ranchao. Turing patterns induced by cross-diffusion in a 2D domain with strong Allee effect. Comptes Rendus. Mathématique, Tome 357 (2019) no. 11-12, pp. 863-877. doi : 10.1016/j.crma.2019.10.011. http://www.numdam.org/articles/10.1016/j.crma.2019.10.011/

[1] Almirantis, Y.; Papageorgiou, S. Cross–diffusion effects on chemical and biological pattern formation, J. Theor. Biol., Volume 151 (1991), pp. 289-311

[2] Becherer, P.; Morozov, A.N.; van Saarloos, W. Probing a subcritical instability with an amplitude expansion: an exploration of how far one can get, Physica D, Volume 238 (2009), pp. 1827-1840

[3] Cantrell, R.S.; Cosner, C. Spatial Ecology via Reaction–Diffusion Equations, John Wiley, Chichester, UK, 2003

[4] Castellano, C.; Fortunato, S.; Loreto, V. Statistical physics of social dynamics, Rev. Mod. Phys., Volume 81 (2009), pp. 592-638

[5] Cox, S.M.; Matthews, P.C. Exponential time differencing for stiff–systems, J. Comput. Phys., Volume 176 (2002), pp. 430-455

[6] Cross, M.; Greenside, H. Pattern Formation and Dynamics in Nonequilibrium Systems, Cambridge University Press, Cambridge, UK, 2009

[7] Cross, M.C.; Hohenberg, P.C. Pattern formation outside of equilibrium, Rev. Mod. Phys., Volume 65 (1993), pp. 851-1112

[8] Cruywagen, G.C.; Maini, P.K.; Murray, J.D. Biological pattern formation on two–dimensional spatial domains: a nonlinear bifurcation analysis, SIAM J. Appl. Math., Volume 57 (1997), pp. 1485-1509

[9] Gambino, G.; Lombardo, M.C.; Sammartino, M. Pattern formation driven by cross-diffusion in a 2D domain, Nonlinear Anal., Real World Appl., Volume 14 (2013), pp. 1755-1779

[10] Gilad, E.; von Hardenberg, J.; Provenzale, A.; Shachak, M.; Meron, E. A mathematical model of plants as ecosystem engineers, J. Theor. Biol., Volume 244 (2007), pp. 680-691

[11] Holmes, E.E.; Lewis, M.A.; Banks, J.E.; Veit, R.R. Partial differential equations in ecology: spatial interactions and population dynamics, Ecology, Volume 75 (1994), pp. 17-29

[12] Hoyle, R. Pattern Formation. An Introduction to Methods, Cambridge University Press, Cambridge, UK, 2006

[13] Kassam, A.K.; Trefethen, L.N. Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., Volume 26 (2005), pp. 1212-1233

[14] Meng, X.; Liu, R.; Zhang, T. Adaptive dynamics for a non-autonomous Lotka-Volterra model with size-selective disturbance, Nonlinear Anal., Real World Appl., Volume 16 (2014), pp. 202-213

[15] Murray, J.D. Mathematical Biology, Springer–Verlag, Berlin, Heidelberg, 2003

[16] Newell, A.; Whitehead, J. Finite band width, finite amplitude convection, J. Fluid Mech., Volume 38 (1969), pp. 279-303

[17] Nisbet, R.M.; Gurney, W.S.C. Modeling Fluctuating Populations, John Wiley, NewYork, 1982

[18] Okubo, A. Diffusion and Ecological Problems: Mathematical Models, Biomathematics, Springer–Verlag, Berlin, Heidelberg, 1980

[19] Owolabi, K.M.; Patidar, K.C. Numerical simulations for multicomponent ecological models with adaptive methods, Theor. Biol. Med. Model., Volume 13 (2016), pp. 1-25

[20] Peng, Y.; Zhang, T. Stability and Hopf bifurcation analysis of a gene expression model with diffusion and time delay, Abstr. Appl. Anal., Volume 2014 (2014)

[21] Peng, Y.; Zhang, T. Turing instability and pattern induced by cross–diffusion in a predator–prey system with Allee effect, Appl. Math. Comput., Volume 275 (2016), pp. 1-12

[22] Perc, M.; Szolnoki, A. Noise–guided evolution within cyclical interactions, New J. Phys., Volume 9 (2007), pp. 267-282

[23] Perc, M.; Szolnoki, A.; Szabo, G. Cyclical interactions with alliance specific heterogeneous invasion rates, Phys. Rev. E, Volume 75 (2007)

[24] Segel, L.A.; Jackson, J.L. Dissipative structure: an explanation and an ecological example, J. Theor. Biol., Volume 37 (1972), pp. 545-559

[25] Shigesada, N.; Kawasaki, K.; Teramoto, E. Spatial segregation of interacting species, J. Theor. Biol., Volume 79 (1979), pp. 83-99

[26] Song, Y.; Zhang, T.; Peng, Y. Turing–Hopf bifurcation in the reaction–diffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., Volume 33 (2016), pp. 229-258

[27] Szolnoki, A.; Mobilia, M.; Jiang, L.-L.; Szczesny, B.; Rucklidge, A.M.; Perc, M. Cyclic dominance in evolutionary games: a review, J. R. Soc. Interface, Volume 11 (2014), pp. 20140735-20140755

[28] Szolnoki, A.; Perc, M. Correlation of positive and negative reciprocity fails to confer an evolutionary advantage: phase transitions to elementary strategies, Phys. Rev. X, Volume 3 (2013)

[29] Tang, X.; Song, Y. Cross–diffusion induced spatiotemporal patterns in a predator–prey model with herd behavior, Nonlinear Anal., Real World Appl., Volume 24 (2015), pp. 36-49

[30] Trefethen, L.N. Spectral Methods in MATLAB, SIAM, Philadelphia, PA, USA, 2000

[31] Turing, A.M. The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B, Volume 237 (1952), pp. 37-72

[32] Vanag, V.K.; Epstein, I.R. Cross–diffusion and pattern formation in reaction–diffusion system, Phys. Chem. Chem. Phys., Volume 11 (2009), pp. 897-912

[33] van Hecke, M.; Hohenberg, P.C.; van Saarloos, W. Amplitude equations for pattern forming systems, Altenberg, Germany, 28 June–10 July 1993 (Ernst, M.H.; van Beijeren, H., eds.) (1994), pp. 245-278

[34] Wollkind, D.J.; Manoranjan, V.S.; Zhang, L. Weakly nonlinear stability analyses of prototype reaction–diffusion model equations, SIAM Rev., Volume 36 (1994), pp. 176-214

[35] Zhang, T.; Xing, Y.; Zang, H.; Han, M. Spatio–temporal dynamics of a reaction–diffusion system for a predator–prey model with hyperbolic mortality, Nonlinear Dyn., Volume 78 (2014), pp. 265-277

[36] Zhang, T.; Zang, H. Delay–induced Turing instability in reaction–diffusion equations, Phys. Rev. E, Volume 90 (2014)

Cité par Sources :